The deterministic Kermack-McKendrick model bounds the general stochastic epidemic

We prove that, for Poisson transmission and recovery processes, the classic Susceptible $\to$ Infected $\to$ Recovered (SIR) epidemic model of Kermack and McKendrick provides, for any given time $t>0$, a strict lower bound on the expected number of suscpetibles and a strict upper bound on the exp...

Full description

Bibliographic Details
Main Authors: Wilkinson, Robert R., Ball, Frank G., Sharkey, Kieran J.
Format: Article
Published: Applied Probability Trust 2016
Subjects:
Online Access:https://eprints.nottingham.ac.uk/40422/
_version_ 1848796052483735552
author Wilkinson, Robert R.
Ball, Frank G.
Sharkey, Kieran J.
author_facet Wilkinson, Robert R.
Ball, Frank G.
Sharkey, Kieran J.
author_sort Wilkinson, Robert R.
building Nottingham Research Data Repository
collection Online Access
description We prove that, for Poisson transmission and recovery processes, the classic Susceptible $\to$ Infected $\to$ Recovered (SIR) epidemic model of Kermack and McKendrick provides, for any given time $t>0$, a strict lower bound on the expected number of suscpetibles and a strict upper bound on the expected number of recoveries in the general stochastic SIR epidemic. The proof is based on the recent message passing representation of SIR epidemics applied to a complete graph.
first_indexed 2025-11-14T19:41:51Z
format Article
id nottingham-40422
institution University of Nottingham Malaysia Campus
institution_category Local University
last_indexed 2025-11-14T19:41:51Z
publishDate 2016
publisher Applied Probability Trust
recordtype eprints
repository_type Digital Repository
spelling nottingham-404222020-05-04T18:26:50Z https://eprints.nottingham.ac.uk/40422/ The deterministic Kermack-McKendrick model bounds the general stochastic epidemic Wilkinson, Robert R. Ball, Frank G. Sharkey, Kieran J. We prove that, for Poisson transmission and recovery processes, the classic Susceptible $\to$ Infected $\to$ Recovered (SIR) epidemic model of Kermack and McKendrick provides, for any given time $t>0$, a strict lower bound on the expected number of suscpetibles and a strict upper bound on the expected number of recoveries in the general stochastic SIR epidemic. The proof is based on the recent message passing representation of SIR epidemics applied to a complete graph. Applied Probability Trust 2016-12-09 Article PeerReviewed Wilkinson, Robert R., Ball, Frank G. and Sharkey, Kieran J. (2016) The deterministic Kermack-McKendrick model bounds the general stochastic epidemic. Journal of Applied Probability, 53 (4). pp. 1031-1040. ISSN 0021-9002 General stochastic epidemic; deterministic general epidemic; SIR; Kermack-McKendrick; message passing; bound https://www.cambridge.org/core/journals/journal-of-applied-probability/article/div-classtitlethe-deterministic-kermackmckendrick-model-bounds-the-general-stochastic-epidemicdiv/E36C0B8C1A9341F35FA2E0B22CE35946 doi:10.1017/jpr.2016.62 doi:10.1017/jpr.2016.62
spellingShingle General stochastic epidemic; deterministic general epidemic; SIR; Kermack-McKendrick; message passing; bound
Wilkinson, Robert R.
Ball, Frank G.
Sharkey, Kieran J.
The deterministic Kermack-McKendrick model bounds the general stochastic epidemic
title The deterministic Kermack-McKendrick model bounds the general stochastic epidemic
title_full The deterministic Kermack-McKendrick model bounds the general stochastic epidemic
title_fullStr The deterministic Kermack-McKendrick model bounds the general stochastic epidemic
title_full_unstemmed The deterministic Kermack-McKendrick model bounds the general stochastic epidemic
title_short The deterministic Kermack-McKendrick model bounds the general stochastic epidemic
title_sort deterministic kermack-mckendrick model bounds the general stochastic epidemic
topic General stochastic epidemic; deterministic general epidemic; SIR; Kermack-McKendrick; message passing; bound
url https://eprints.nottingham.ac.uk/40422/
https://eprints.nottingham.ac.uk/40422/
https://eprints.nottingham.ac.uk/40422/