Intragastric structuring of anionic polysaccharide kappa-carrageenan filled gels under physiological in vitro digestion conditions

In the present work, sodium alginate (SA), low methoxyl pectin (PEC) and κ-carrageenan (κ-CAR) were evaluated for their intragastric structuring ability by means of light microscopy and dynamic oscillatory rheology. SA and PEC solutions, their Ca2+ complexed gel analogues as well as their binary ble...

Full description

Bibliographic Details
Main Authors: Soukoulis, Christos, Fisk, Ian D., Gan, Heng-Hui, Hoffmann, Lucien
Format: Article
Published: Elsevier 2016
Subjects:
Online Access:https://eprints.nottingham.ac.uk/40054/
Description
Summary:In the present work, sodium alginate (SA), low methoxyl pectin (PEC) and κ-carrageenan (κ-CAR) were evaluated for their intragastric structuring ability by means of light microscopy and dynamic oscillatory rheology. SA and PEC solutions, their Ca2+ complexed gel analogues as well as their binary blends with ionically or thermally set sheared κ-CAR gels, were subjected to in vitro orogastric conditions. SA and PEC – Ca2+ complexed sheared gels exerted the highest vulnerability to digestive fluid exposure due to the dialysis of egg-box dimer structures via proton-calcium exchange. Incorporation of SA and PEC systems to κ-CAR gels prevented the loss of mechanical strength of the gastric gels due to the ability of κ-CAR to undergo spontaneous gelation in the presence of Na+ and K+ ions. Binary blends of SA and PEC – Ca2+ complexed sheared gels with κ-CAR-Ca2+ gels exerted a significantly lower mechanical strength loss sensitivity against pH and counterion composition of the gastric fluids.