Signatures of many-body localisation in a system without disorder and the relation to a glass transition

We study a quantum spin system—adapted from a facilitated spin model for classical glasses—with local bilinear interactions and without quenched disorder which seems to display characteristic signatures of a many-body localisation (MBL) transition. From direct diagonalisation of small systems, we fi...

Full description

Bibliographic Details
Main Authors: Hickey, James M., Genway, Sam, Garrahan, Juan P.
Format: Article
Published: IOP Publishing 2016
Subjects:
Online Access:https://eprints.nottingham.ac.uk/39663/
Description
Summary:We study a quantum spin system—adapted from a facilitated spin model for classical glasses—with local bilinear interactions and without quenched disorder which seems to display characteristic signatures of a many-body localisation (MBL) transition. From direct diagonalisation of small systems, we find a change in certain dynamical and spectral properties at a critical value of a coupling, from those characteristic of a thermalising phase to those characteristic of a MBL phase. The system we consider is known to have a quantum phase transition in its ground-state in the limit of large size, related to a first-order active-to-inactive phase transition in the stochastic trajectories of an associated classical model of glasses. Our results here suggest that this first-order transition in the low-lying spectrum may influence the rest of the spectrum of the system in the large size limit. These findings may help understand the connection between MBL and structural glass transitions.