Ankyrin-mediated self-protection during cell invasion by the bacterial predator Bdellovibrio bacteriovorus

Predatory Bdellovibrio bacteriovorus are natural antimicrobial organisms, killing other bacteria by whole-cell invasion. Self-protection against prey-metabolizing enzymes is important for the evolution of predation. Initial prey entry involves the predator’s peptidoglycan DD-endopeptidases, which de...

Full description

Bibliographic Details
Main Authors: Lambert, Carey, Cadby, Ian, Till, Rob, Bui, Nhat Khai, Lerner, Thomas R., Hughes, William S., Lee, David J., Alderwick, Luke J., Vollmer, Waldemar, Sockett, R. Elizabeth, Lovering, Andrew L.
Format: Article
Published: Nature Publishing Group 2015
Subjects:
Online Access:https://eprints.nottingham.ac.uk/39558/
Description
Summary:Predatory Bdellovibrio bacteriovorus are natural antimicrobial organisms, killing other bacteria by whole-cell invasion. Self-protection against prey-metabolizing enzymes is important for the evolution of predation. Initial prey entry involves the predator’s peptidoglycan DD-endopeptidases, which decrosslink cell walls and prevent wasteful entry by a second predator. Here we identify and characterize a self-protection protein from B. bacteriovorus, Bd3460, which displays an ankyrin-based fold common to intracellular pathogens of eukaryotes. Co-crystal structures reveal Bd3460 complexation of dual targets, binding a conserved epitope of each of the Bd3459 and Bd0816 endopeptidases. Complexation inhibits endopeptidase activity and cell wall decrosslinking in vitro. Self-protection is vital — DBd3460 Bdellovibrio deleteriously decrosslink self-peptidoglycan upon invasion, adopt a round morpholog, and lose predatory capacity and cellular integrity. Our analysis provides the first mechanistic examination of self-protection in Bdellovibrio, documents protection-multiplicity for products of two different genomic loci, and reveals an important evolutionary adaptation to an invasive predatory bacterial lifestyle.