Towards rotation sensing with a single atomic clock

We discuss a scheme to implement a gyroscopic atom sensor with magnetically trapped ultra-cold atoms. Unlike standard light or matter wave Sagnac interferometers no free wave propagation is used. Interferometer operation is controlled only with static, radio-frequency and microwave magnetic fields,...

Full description

Bibliographic Details
Main Authors: Fernholz, Thomas, Stevenson, Robin, Hush, Michael R., Lesanovsky, Igor, Bishop, Thomas, Gentile, Fabio, Jammi, Sindhu, Pyragius, Tadas, Bason, Mark G., Mas, Hector, Pandey, Saurabh, Vasilakis, Georgios, Poulios, Konstantinos, von Klitzing, Wolf
Format: Article
Published: SPIE 2016
Subjects:
Online Access:https://eprints.nottingham.ac.uk/39503/
Description
Summary:We discuss a scheme to implement a gyroscopic atom sensor with magnetically trapped ultra-cold atoms. Unlike standard light or matter wave Sagnac interferometers no free wave propagation is used. Interferometer operation is controlled only with static, radio-frequency and microwave magnetic fields, which removes the need for interferometric stability of optical laser beams. Due to the confinement of atoms, the scheme may allow the construction of small scale portable sensors. We discuss the main elements of the scheme and report on recent results and efforts towards its experimental realization.