Novel anion-bound borates as lubricant additives

Effective anti-wear lubricant additives are highly desirable in order to improve the performance and lifetime of automotive engines and transmission systems, whilst keeping in line with environmental standards. Although there has been recent research interest into the use of additives containing bot...

Full description

Bibliographic Details
Main Author: Shaw, Katherine
Format: Thesis (University of Nottingham only)
Language:English
Published: 2016
Online Access:https://eprints.nottingham.ac.uk/37922/
_version_ 1848795561155624960
author Shaw, Katherine
author_facet Shaw, Katherine
author_sort Shaw, Katherine
building Nottingham Research Data Repository
collection Online Access
description Effective anti-wear lubricant additives are highly desirable in order to improve the performance and lifetime of automotive engines and transmission systems, whilst keeping in line with environmental standards. Although there has been recent research interest into the use of additives containing both boron and phosphorus, the field is rather underdeveloped and there is much scope for further exploration of this area. To this end, this thesis describes the synthesis and anti-wear testing of a series of novel phosphate-bound borate potential lubricant additives. An investigation into pyroborate compounds, a key building block of these additives, is presented. The synthesis of a range of known and novel pyroborates is reported, and (3-MeOcatB)2O is crystallographically characterised. Analysis of the Lewis acidity of these species via the Gutmann-Beckett method is discussed, revealing loss of acidity when alkyl substituents and nitrogen donor atoms are introduced. A preliminary DFT study of (catB)2O, (3-MeOcatB)2O, (Naph-1,2-O2B)2O, (Ph{NH}2B)2O and (pinB)2O indicates that Lewis acidity depends on both the size and energy of the empty pz orbitals on the boron centres only in the case of alkoxy-donor species. The synthesis of a range of novel four-coordinate bis-borate species via a largely solvent-free methodology is reported and the crystallographic analysis of a selection of these compounds is presented. A preliminary study indicates very weak conductivity of these species, due to lack of solubility and large ionic radii. This presents a starting point for the further variation of such species for electrochemical applications. The use of short-chain anion-bound pyroborate species as models for longer-chain additive compounds is discussed. The synthesis of a range of model species is reported, and a study of their solution-phase behaviour carried out by NMR spectroscopy. The anion-binding behaviour of a selection of these species is discussed and the binding strength of (catB)2O and (3-MeOcatB2O) with several anions compared. The extension of this methodology to long-chain analogues is presented, highlighting the hydrolytic stability and scalability offered by such species. The screening of the lubricant suitability of a range of long-chain phosphate-bound borate species is discussed, with attention paid to hydrolytic stability and oil-solubility. The testing of the suitable additives under engine oil and driveline conditions is presented, and the resulting wear scar diameters, coefficients of friction and contact potentials discussed. This offers insight into the structure-performance relationship at play in these systems, indicating structural motifs to be avoided in the design of these additives. The comparison of the performance of these compounds with existing anti-wear additives is presented, with many of these novel phosphate-bound species offering superior anti-wear activity, particular those of lower molecular weight. Further testing of the high-performing additive {HNnBu3}{[(4-PIB1000catB)2O][HnBuPO4]} in both engine oils and driveline tests indicates the strong promise of these compounds as a new family of lubricant additives.
first_indexed 2025-11-14T19:34:02Z
format Thesis (University of Nottingham only)
id nottingham-37922
institution University of Nottingham Malaysia Campus
institution_category Local University
language English
last_indexed 2025-11-14T19:34:02Z
publishDate 2016
recordtype eprints
repository_type Digital Repository
spelling nottingham-379222025-02-28T13:34:49Z https://eprints.nottingham.ac.uk/37922/ Novel anion-bound borates as lubricant additives Shaw, Katherine Effective anti-wear lubricant additives are highly desirable in order to improve the performance and lifetime of automotive engines and transmission systems, whilst keeping in line with environmental standards. Although there has been recent research interest into the use of additives containing both boron and phosphorus, the field is rather underdeveloped and there is much scope for further exploration of this area. To this end, this thesis describes the synthesis and anti-wear testing of a series of novel phosphate-bound borate potential lubricant additives. An investigation into pyroborate compounds, a key building block of these additives, is presented. The synthesis of a range of known and novel pyroborates is reported, and (3-MeOcatB)2O is crystallographically characterised. Analysis of the Lewis acidity of these species via the Gutmann-Beckett method is discussed, revealing loss of acidity when alkyl substituents and nitrogen donor atoms are introduced. A preliminary DFT study of (catB)2O, (3-MeOcatB)2O, (Naph-1,2-O2B)2O, (Ph{NH}2B)2O and (pinB)2O indicates that Lewis acidity depends on both the size and energy of the empty pz orbitals on the boron centres only in the case of alkoxy-donor species. The synthesis of a range of novel four-coordinate bis-borate species via a largely solvent-free methodology is reported and the crystallographic analysis of a selection of these compounds is presented. A preliminary study indicates very weak conductivity of these species, due to lack of solubility and large ionic radii. This presents a starting point for the further variation of such species for electrochemical applications. The use of short-chain anion-bound pyroborate species as models for longer-chain additive compounds is discussed. The synthesis of a range of model species is reported, and a study of their solution-phase behaviour carried out by NMR spectroscopy. The anion-binding behaviour of a selection of these species is discussed and the binding strength of (catB)2O and (3-MeOcatB2O) with several anions compared. The extension of this methodology to long-chain analogues is presented, highlighting the hydrolytic stability and scalability offered by such species. The screening of the lubricant suitability of a range of long-chain phosphate-bound borate species is discussed, with attention paid to hydrolytic stability and oil-solubility. The testing of the suitable additives under engine oil and driveline conditions is presented, and the resulting wear scar diameters, coefficients of friction and contact potentials discussed. This offers insight into the structure-performance relationship at play in these systems, indicating structural motifs to be avoided in the design of these additives. The comparison of the performance of these compounds with existing anti-wear additives is presented, with many of these novel phosphate-bound species offering superior anti-wear activity, particular those of lower molecular weight. Further testing of the high-performing additive {HNnBu3}{[(4-PIB1000catB)2O][HnBuPO4]} in both engine oils and driveline tests indicates the strong promise of these compounds as a new family of lubricant additives. 2016-12-14 Thesis (University of Nottingham only) NonPeerReviewed application/pdf en arr https://eprints.nottingham.ac.uk/37922/1/KShaw%20Full%20Thesis.pdf Shaw, Katherine (2016) Novel anion-bound borates as lubricant additives. PhD thesis, University of Nottingham.
spellingShingle Shaw, Katherine
Novel anion-bound borates as lubricant additives
title Novel anion-bound borates as lubricant additives
title_full Novel anion-bound borates as lubricant additives
title_fullStr Novel anion-bound borates as lubricant additives
title_full_unstemmed Novel anion-bound borates as lubricant additives
title_short Novel anion-bound borates as lubricant additives
title_sort novel anion-bound borates as lubricant additives
url https://eprints.nottingham.ac.uk/37922/