Yeast m6 A methylated mRNAs are enriched on translating ribosomes during meiosis, and under rapamycin treatment
Interest in mRNA methylation has exploded in recent years. The sudden interest in a 40 year old discovery was due in part to the finding of FTO’s (Fat Mass Obesity) N6-methyladenosine (m6 A) deaminase activity, thus suggesting a link between obesity-associated diseases and the presence of m6 A in mR...
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Published: |
Public Library of Science
2015
|
| Online Access: | https://eprints.nottingham.ac.uk/37456/ |
| _version_ | 1848795462106087424 |
|---|---|
| author | Bodi, Zsuzsanna Bottley, Andrew Archer, Nathan May, Sean Fray, Rupert G. |
| author_facet | Bodi, Zsuzsanna Bottley, Andrew Archer, Nathan May, Sean Fray, Rupert G. |
| author_sort | Bodi, Zsuzsanna |
| building | Nottingham Research Data Repository |
| collection | Online Access |
| description | Interest in mRNA methylation has exploded in recent years. The sudden interest in a 40 year old discovery was due in part to the finding of FTO’s (Fat Mass Obesity) N6-methyladenosine (m6 A) deaminase activity, thus suggesting a link between obesity-associated diseases and the presence of m6 A in mRNA. Another catalyst of the sudden rise in mRNA methylation research was the release of mRNA methylomes for human, mouse and Saccharomyces cerevisiae. However, the molecular function, or functions of this mRNA ‘epimark’ remain to be discovered. There is supportive evidence that m6 A could be a mark for mRNA degradation due to its binding to YTH domain proteins, and consequently being chaperoned to P bodies. Nonetheless, only a subpopulation of the methylome was found binding to YTHDF2 in HeLa cells.The model organism Saccharomyces cerevisiae, has only one YTH domain protein (Pho92, Mrb1), which targets PHO4 transcripts for degradation under phosphate starvation. However, mRNA methylation is only found under meiosis inducing conditions, and PHO4 transcripts are apparently non-methylated. In this paper we set out to investigate if m6 A could function alternatively to being a degradation mark in S. cerevisiae; we also sought to test whether it can be induced under non-standard sporulation conditions. We find a positive association between the presence of m6 A and message translatability. We also find m6 A induction following prolonged rapamycin treatment. |
| first_indexed | 2025-11-14T19:32:28Z |
| format | Article |
| id | nottingham-37456 |
| institution | University of Nottingham Malaysia Campus |
| institution_category | Local University |
| last_indexed | 2025-11-14T19:32:28Z |
| publishDate | 2015 |
| publisher | Public Library of Science |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | nottingham-374562020-05-04T17:12:43Z https://eprints.nottingham.ac.uk/37456/ Yeast m6 A methylated mRNAs are enriched on translating ribosomes during meiosis, and under rapamycin treatment Bodi, Zsuzsanna Bottley, Andrew Archer, Nathan May, Sean Fray, Rupert G. Interest in mRNA methylation has exploded in recent years. The sudden interest in a 40 year old discovery was due in part to the finding of FTO’s (Fat Mass Obesity) N6-methyladenosine (m6 A) deaminase activity, thus suggesting a link between obesity-associated diseases and the presence of m6 A in mRNA. Another catalyst of the sudden rise in mRNA methylation research was the release of mRNA methylomes for human, mouse and Saccharomyces cerevisiae. However, the molecular function, or functions of this mRNA ‘epimark’ remain to be discovered. There is supportive evidence that m6 A could be a mark for mRNA degradation due to its binding to YTH domain proteins, and consequently being chaperoned to P bodies. Nonetheless, only a subpopulation of the methylome was found binding to YTHDF2 in HeLa cells.The model organism Saccharomyces cerevisiae, has only one YTH domain protein (Pho92, Mrb1), which targets PHO4 transcripts for degradation under phosphate starvation. However, mRNA methylation is only found under meiosis inducing conditions, and PHO4 transcripts are apparently non-methylated. In this paper we set out to investigate if m6 A could function alternatively to being a degradation mark in S. cerevisiae; we also sought to test whether it can be induced under non-standard sporulation conditions. We find a positive association between the presence of m6 A and message translatability. We also find m6 A induction following prolonged rapamycin treatment. Public Library of Science 2015-07-17 Article PeerReviewed Bodi, Zsuzsanna, Bottley, Andrew, Archer, Nathan, May, Sean and Fray, Rupert G. (2015) Yeast m6 A methylated mRNAs are enriched on translating ribosomes during meiosis, and under rapamycin treatment. PLoS ONE, 10 . e0132090/1-e0132090/13. ISSN 1932-6203 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0132090 doi:10.1371/journal.pone.0132090 doi:10.1371/journal.pone.0132090 |
| spellingShingle | Bodi, Zsuzsanna Bottley, Andrew Archer, Nathan May, Sean Fray, Rupert G. Yeast m6 A methylated mRNAs are enriched on translating ribosomes during meiosis, and under rapamycin treatment |
| title | Yeast m6 A methylated mRNAs are enriched on translating ribosomes during meiosis, and under rapamycin treatment |
| title_full | Yeast m6 A methylated mRNAs are enriched on translating ribosomes during meiosis, and under rapamycin treatment |
| title_fullStr | Yeast m6 A methylated mRNAs are enriched on translating ribosomes during meiosis, and under rapamycin treatment |
| title_full_unstemmed | Yeast m6 A methylated mRNAs are enriched on translating ribosomes during meiosis, and under rapamycin treatment |
| title_short | Yeast m6 A methylated mRNAs are enriched on translating ribosomes during meiosis, and under rapamycin treatment |
| title_sort | yeast m6 a methylated mrnas are enriched on translating ribosomes during meiosis, and under rapamycin treatment |
| url | https://eprints.nottingham.ac.uk/37456/ https://eprints.nottingham.ac.uk/37456/ https://eprints.nottingham.ac.uk/37456/ |