Co-infection and emergence of rifamycin resistance during a recurrent Clostridium difficile infection
Clostridium difficile (Peptoclostridium difficile) is a common health care-associated infection with a disproportionately high incidence in elderly patients. Disease symptoms range from mild diarrhea to life-threatening pseudomembranous colitis. Around 20% of patients may suffer recurrent disease, w...
| Main Authors: | Stevenson, Emma C., Major, Giles A., Spiller, Robin C., Kuehne, Sarah A., Minton, Nigel P. |
|---|---|
| Format: | Article |
| Published: |
American Society for Microbiology
2016
|
| Online Access: | https://eprints.nottingham.ac.uk/37306/ |
Similar Items
Both, toxin A and toxin B, are important in Clostridium difficile infection
by: Kuehne, Sarah A., et al.
Published: (2011)
by: Kuehne, Sarah A., et al.
Published: (2011)
Clostridium difficile infection: clinico-epidemiological perspective.
by: SYUHADA N,, et al.
Published: (2013)
by: SYUHADA N,, et al.
Published: (2013)
Community-associated Clostridium difficile infection in emergency department patients in Western Australia
by: Collins, D., et al.
Published: (2017)
by: Collins, D., et al.
Published: (2017)
Spore germination and recurrence of clostridioides difficile infection
by: Finch, Lorna
Published: (2020)
by: Finch, Lorna
Published: (2020)
Exposing hidden putative lipoproteins in Clostridium difficile
by: Griffin, R., et al.
Published: (2017)
by: Griffin, R., et al.
Published: (2017)
The antimicrobial and bile acid mediated control of
Clostridium difficile infection
by: Dempster, Andrew William
Published: (2018)
by: Dempster, Andrew William
Published: (2018)
Importance of Toxin A, Toxin B, and CDT in virulence of an epidemic Clostridium difficile strain
by: Kuehne, Sarah A., et al.
Published: (2013)
by: Kuehne, Sarah A., et al.
Published: (2013)
Multiple factors modulate biofilm formation by the anaerobic pathogen Clostridium difficile
by: Dapa, Tanja, et al.
Published: (2013)
by: Dapa, Tanja, et al.
Published: (2013)
A review on the effects of probiotics and antibiotics towards Clostridium difficile infections
by: Azman, Hazirah, et al.
Published: (2013)
by: Azman, Hazirah, et al.
Published: (2013)
Clostridium difficile Infections amongst Patients with Haematological Malignancies: A Data Linkage Study
by: Selvey, Linda, et al.
Published: (2016)
by: Selvey, Linda, et al.
Published: (2016)
Towards development of a liposome-based vaccine to combat Clostridium difficile infection
by: Palazi, Panayiota
Published: (2021)
by: Palazi, Panayiota
Published: (2021)
Serum trace metal concentrations in Clostridium difficile infection and their relationship to disease severity
by: Monaghan, Tanya M., et al.
Published: (2018)
by: Monaghan, Tanya M., et al.
Published: (2018)
Clostridium difficile modulates host innate immunity via
toxin-independent and dependent mechanism(s)
by: Jafari, Nazilla V., et al.
Published: (2013)
by: Jafari, Nazilla V., et al.
Published: (2013)
Development of Clostridium difficile R20291ΔPaLoc model strains and in vitro methodologies reveals CdtR is required for the production of CDT to cytotoxic levels
by: Bilverstone, T.W., et al.
Published: (2017)
by: Bilverstone, T.W., et al.
Published: (2017)
The role of flagella in Clostridium difficile pathogenesis: comparison between a non-epidemic and an epidemic strain
by: Baban, Soza T., et al.
Published: (2013)
by: Baban, Soza T., et al.
Published: (2013)
The role of flagella in Clostridium difficile pathogenesis:
comparison between a non-epidemic and an epidemic
strain
by: Baban, Soza T., et al.
Published: (2013)
by: Baban, Soza T., et al.
Published: (2013)
Isolation and characterisation of four novel bacteriophages infecting clinically relevant PCR ribotypes of Clostridium difficile
by: Whittle, Michaella
Published: (2018)
by: Whittle, Michaella
Published: (2018)
Spores of Clostridium difficile clinical isolates display a diverse germination response to bile salts
by: Heeg, Daniela, et al.
Published: (2012)
by: Heeg, Daniela, et al.
Published: (2012)
Prevalence of clostridium difficile infection in Hospital Sungai Buloh and the associated risk factors / Nurul Suhaiza Hassanudin
by: Nurul Suhaiza, Hassanudin
Published: (2017)
by: Nurul Suhaiza, Hassanudin
Published: (2017)
What's a SNP between friends: the influence of single nucleotide polymorphisms on virulence and phenotypes of Clostridium difficile strain 630 and derivatives
by: Collery, Mark M., et al.
Published: (2016)
by: Collery, Mark M., et al.
Published: (2016)
A protein microarray assay for serological determination of antigen-specific antibody responses following Clostridium difficile infection
by: Negm, Ola H., et al.
Published: (2018)
by: Negm, Ola H., et al.
Published: (2018)
Prevalence and associated risk factors of
clostridium difficile infection in type 2 diabetes
mellitus patients treated with antibiotics
by: Rahman, Rozanah Abd
Published: (2010)
by: Rahman, Rozanah Abd
Published: (2010)
The risk of Clostridium difficile infection in patients with pernicious anaemia: a retrospective cohort study using primary care database.
by: Othman, Fatmah, et al.
Published: (2017)
by: Othman, Fatmah, et al.
Published: (2017)
Prevalance and molecular epidemiology of clostridium difficile infection in Hospital Universiti Sains Malaysia patients and elderly community subjects in Kelantan
by: Zainul, Nadiah Hanim
Published: (2016)
by: Zainul, Nadiah Hanim
Published: (2016)
High prevalence of subclass-specific binding and neutralizing antibodies against Clostridium difficile toxins in adult cystic fibrosis sera: possible mode of immunoprotection against symptomatic C. difficile infection
by: Monaghan, Tanya M., et al.
Published: (2017)
by: Monaghan, Tanya M., et al.
Published: (2017)
Mucosal cell responses to Clostridium difficile toxins
by: Mullan, Nivette K.
Published: (2011)
by: Mullan, Nivette K.
Published: (2011)
Analysis of the spore germination mechanisms of Clostridium difficile
by: Burns, David Alexander
Published: (2011)
by: Burns, David Alexander
Published: (2011)
Amino acids utilisation by Clostridium difficile strains
by: Ogbu, H.I.
Published: (2016)
by: Ogbu, H.I.
Published: (2016)
Characterisation of phosphotransferase systems (PTS) in Clostridium difficile
by: Bollard, Niall
Published: (2018)
by: Bollard, Niall
Published: (2018)
Irritable bowel syndrome, inflammatory bowel disease and the microbiome
by: Major, Giles, et al.
Published: (2014)
by: Major, Giles, et al.
Published: (2014)
Structure-function relationships of Clostridium difficile toxin A
by: Craggs, Joanna K.
Published: (1999)
by: Craggs, Joanna K.
Published: (1999)
Molecular epidemiology of Clostridium difficile isolated from piglets
by: Putsathit, Papanin, et al.
Published: (2019)
by: Putsathit, Papanin, et al.
Published: (2019)
Investigating the bile acid mediated control of Clostridioides difficile infection
by: von Emloh, Louise
Published: (2024)
by: von Emloh, Louise
Published: (2024)
High prevalence of Clostridium difficile Ribotype 078 in IBD outpatients
by: Monaghan, Tanya M., et al.
Published: (2018)
by: Monaghan, Tanya M., et al.
Published: (2018)
CdtR-mediated regulation of toxin production in Clostridium difficile
by: Bilverstone, Terry W.
Published: (2019)
by: Bilverstone, Terry W.
Published: (2019)
Expanding the repertoire of gene tools for precise manipulation of the Clostridium difficile genome: allelic exchange using pyrE alleles
by: Ng, Yen K., et al.
Published: (2013)
by: Ng, Yen K., et al.
Published: (2013)
Survival mixture modelling of recurrent infections
by: Lee, Andy, et al.
Published: (2008)
by: Lee, Andy, et al.
Published: (2008)
Obtaining a lytic bacteriophage suitable for use in phage therapy against Clostridioides difficile infection
by: Kerr, Sarah
Published: (2023)
by: Kerr, Sarah
Published: (2023)
Understanding the genetic mechanisms of Clostridium difficile toxin regulation and clinical relapse
by: Lister, Michelle M.
Published: (2018)
by: Lister, Michelle M.
Published: (2018)
Identification and characterisation of tail components modulating host range of Clostridium difficile phages
by: Steczynska, Joanna
Published: (2023)
by: Steczynska, Joanna
Published: (2023)
Similar Items
-
Both, toxin A and toxin B, are important in Clostridium difficile infection
by: Kuehne, Sarah A., et al.
Published: (2011) -
Clostridium difficile infection: clinico-epidemiological perspective.
by: SYUHADA N,, et al.
Published: (2013) -
Community-associated Clostridium difficile infection in emergency department patients in Western Australia
by: Collins, D., et al.
Published: (2017) -
Spore germination and recurrence of clostridioides difficile infection
by: Finch, Lorna
Published: (2020) -
Exposing hidden putative lipoproteins in Clostridium difficile
by: Griffin, R., et al.
Published: (2017)