| Summary: | Recent applications in computer vision have come to rely on superpixel segmentation as a pre-processing step for higher level vision tasks, such as object recognition, scene labelling or image segmentation. Here, we present a new algorithm, Superpixels from MUlti-scale ReFinement of Super-regions (SMURFS), which not only obtains state-of-the-art superpixels, but can also be applied hierarchically to form what we call n-th order super-regions. In essence, starting from a uniformly distributed set of super-regions, the algorithm iteratively alternates graph-based split and merge optimization schemes which yield superpixels that better represent the image. The split step is performed over the pixel grid to separate large super-regions into different smaller superpixels. The merging process, conversely, is performed over the superpixel graph to create 2nd-order super-regions (super-segments). Iterative refinement over two scale of regions allows the algorithm to achieve better over-segmentation results than current state-of-the-art methods, as experimental results show on the public Berkeley Segmentation Dataset (BSD500).
|