nIFTy galaxy cluster simulations – I. Dark matter and non-radiative models
We have simulated the formation of a galaxy cluster in a Ʌ cold dark matter universe using 13 different codes modelling only gravity and non-radiative hydrodynamics (RAMSES, ART, AREPO, HYDRA and nine incarnations of GADGET). This range of codes includes particle-based, moving and fixed mesh codes a...
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Published: |
Oxford University Press
2016
|
| Subjects: | |
| Online Access: | https://eprints.nottingham.ac.uk/36360/ |
| _version_ | 1848795272344240128 |
|---|---|
| author | Sembolini, Federico Yepes, Gustavo Pearce, Frazer R. Knebe, Alexander Kay, Scott T. Power, Chris Cui, Weiguang Beck, Alexander M. Borgani, Stefano Dalla Vecchia, Claudio Davé, Romeel Elahi, Pascal Jahan February, Sean Huang, Shuiyao Hobbs, Alex Katz, Neal Lau, Erwin McCarthy, Ian G. Murante, Giuseppe Nagai, Daisuke Nelson, Kaylea Newton, Richard D. A. Perret, Valentin Puchwein, Ewald Read, Justin I. Saro, Alexandro Schaye, Joop Teyssier, Romain Thacker, Robert J. |
| author_facet | Sembolini, Federico Yepes, Gustavo Pearce, Frazer R. Knebe, Alexander Kay, Scott T. Power, Chris Cui, Weiguang Beck, Alexander M. Borgani, Stefano Dalla Vecchia, Claudio Davé, Romeel Elahi, Pascal Jahan February, Sean Huang, Shuiyao Hobbs, Alex Katz, Neal Lau, Erwin McCarthy, Ian G. Murante, Giuseppe Nagai, Daisuke Nelson, Kaylea Newton, Richard D. A. Perret, Valentin Puchwein, Ewald Read, Justin I. Saro, Alexandro Schaye, Joop Teyssier, Romain Thacker, Robert J. |
| author_sort | Sembolini, Federico |
| building | Nottingham Research Data Repository |
| collection | Online Access |
| description | We have simulated the formation of a galaxy cluster in a Ʌ cold dark matter universe using 13 different codes modelling only gravity and non-radiative hydrodynamics (RAMSES, ART, AREPO, HYDRA and nine incarnations of GADGET). This range of codes includes particle-based, moving and fixed mesh codes as well as both Eulerian and Lagrangian fluid schemes. The various GADGET implementations span classic and modern smoothed particle hydrodynamics (SPH) schemes. The goal of this comparison is to assess the reliability of cosmological hydrodynamical simulations of clusters in the simplest astrophysically relevant case, that in which the gas is assumed to be non-radiative. We compare images of the cluster at z = 0, global properties such as mass and radial profiles of various dynamical and thermodynamical quantities. The underlying gravitational framework can be aligned very accurately for all the codes allowing a detailed investigation of the differences that develop due to the various gas physics implementations employed. As expected, the mesh-based codes RAMSES, ART and AREPO form extended entropy cores in the gas with rising central gas temperatures. Those codes employing classic SPH schemes show falling entropy profiles all the way into the very centre with correspondingly rising density profiles and central temperature inversions. We show that methods with modern SPH schemes that allow entropy mixing span the range between these two extremes and the latest SPH variants produce gas entropy profiles that are essentially indistinguishable from those obtained with grid-based methods. |
| first_indexed | 2025-11-14T19:29:27Z |
| format | Article |
| id | nottingham-36360 |
| institution | University of Nottingham Malaysia Campus |
| institution_category | Local University |
| last_indexed | 2025-11-14T19:29:27Z |
| publishDate | 2016 |
| publisher | Oxford University Press |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | nottingham-363602020-05-04T17:37:30Z https://eprints.nottingham.ac.uk/36360/ nIFTy galaxy cluster simulations – I. Dark matter and non-radiative models Sembolini, Federico Yepes, Gustavo Pearce, Frazer R. Knebe, Alexander Kay, Scott T. Power, Chris Cui, Weiguang Beck, Alexander M. Borgani, Stefano Dalla Vecchia, Claudio Davé, Romeel Elahi, Pascal Jahan February, Sean Huang, Shuiyao Hobbs, Alex Katz, Neal Lau, Erwin McCarthy, Ian G. Murante, Giuseppe Nagai, Daisuke Nelson, Kaylea Newton, Richard D. A. Perret, Valentin Puchwein, Ewald Read, Justin I. Saro, Alexandro Schaye, Joop Teyssier, Romain Thacker, Robert J. We have simulated the formation of a galaxy cluster in a Ʌ cold dark matter universe using 13 different codes modelling only gravity and non-radiative hydrodynamics (RAMSES, ART, AREPO, HYDRA and nine incarnations of GADGET). This range of codes includes particle-based, moving and fixed mesh codes as well as both Eulerian and Lagrangian fluid schemes. The various GADGET implementations span classic and modern smoothed particle hydrodynamics (SPH) schemes. The goal of this comparison is to assess the reliability of cosmological hydrodynamical simulations of clusters in the simplest astrophysically relevant case, that in which the gas is assumed to be non-radiative. We compare images of the cluster at z = 0, global properties such as mass and radial profiles of various dynamical and thermodynamical quantities. The underlying gravitational framework can be aligned very accurately for all the codes allowing a detailed investigation of the differences that develop due to the various gas physics implementations employed. As expected, the mesh-based codes RAMSES, ART and AREPO form extended entropy cores in the gas with rising central gas temperatures. Those codes employing classic SPH schemes show falling entropy profiles all the way into the very centre with correspondingly rising density profiles and central temperature inversions. We show that methods with modern SPH schemes that allow entropy mixing span the range between these two extremes and the latest SPH variants produce gas entropy profiles that are essentially indistinguishable from those obtained with grid-based methods. Oxford University Press 2016-02-10 Article PeerReviewed Sembolini, Federico, Yepes, Gustavo, Pearce, Frazer R., Knebe, Alexander, Kay, Scott T., Power, Chris, Cui, Weiguang, Beck, Alexander M., Borgani, Stefano, Dalla Vecchia, Claudio, Davé, Romeel, Elahi, Pascal Jahan, February, Sean, Huang, Shuiyao, Hobbs, Alex, Katz, Neal, Lau, Erwin, McCarthy, Ian G., Murante, Giuseppe, Nagai, Daisuke, Nelson, Kaylea, Newton, Richard D. A., Perret, Valentin, Puchwein, Ewald, Read, Justin I., Saro, Alexandro, Schaye, Joop, Teyssier, Romain and Thacker, Robert J. (2016) nIFTy galaxy cluster simulations – I. Dark matter and non-radiative models. Monthly Notices of the Royal Astronomical Society, 457 (4). pp. 4063-4080. ISSN 1365-2966 Methods: numerical - galaxies: haloes - cosmology: theory - dark matter http://mnras.oxfordjournals.org/content/457/4/4063 doi:10.1093/mnras/stw250 doi:10.1093/mnras/stw250 |
| spellingShingle | Methods: numerical - galaxies: haloes - cosmology: theory - dark matter Sembolini, Federico Yepes, Gustavo Pearce, Frazer R. Knebe, Alexander Kay, Scott T. Power, Chris Cui, Weiguang Beck, Alexander M. Borgani, Stefano Dalla Vecchia, Claudio Davé, Romeel Elahi, Pascal Jahan February, Sean Huang, Shuiyao Hobbs, Alex Katz, Neal Lau, Erwin McCarthy, Ian G. Murante, Giuseppe Nagai, Daisuke Nelson, Kaylea Newton, Richard D. A. Perret, Valentin Puchwein, Ewald Read, Justin I. Saro, Alexandro Schaye, Joop Teyssier, Romain Thacker, Robert J. nIFTy galaxy cluster simulations – I. Dark matter and non-radiative models |
| title | nIFTy galaxy cluster simulations – I. Dark matter and non-radiative models |
| title_full | nIFTy galaxy cluster simulations – I. Dark matter and non-radiative models |
| title_fullStr | nIFTy galaxy cluster simulations – I. Dark matter and non-radiative models |
| title_full_unstemmed | nIFTy galaxy cluster simulations – I. Dark matter and non-radiative models |
| title_short | nIFTy galaxy cluster simulations – I. Dark matter and non-radiative models |
| title_sort | nifty galaxy cluster simulations – i. dark matter and non-radiative models |
| topic | Methods: numerical - galaxies: haloes - cosmology: theory - dark matter |
| url | https://eprints.nottingham.ac.uk/36360/ https://eprints.nottingham.ac.uk/36360/ https://eprints.nottingham.ac.uk/36360/ |