A robust binary supramolecular organic framework (SOF) with high CO2 adsorption and selectivity

A robust binary hydrogen-bonded supramolecular organic framework (SOF-7) has been synthesized by solvothermal reaction of 1,4-bis-(4-(3,5-dicyano-2,6 dipyridyl)dihydropyridyl)benzene (1) and 5,5’-bis-(azanediyl)-oxalyl-diisophthalic acid (2). Single crystal X-ray diffraction analysis shows that SOF-...

Full description

Bibliographic Details
Main Authors: Lu, Jian, Perez-Krap, Cristina, Suyetin, Mikhail, Alsmail, Nada H., Yan, Yong, Yang, Sihai, Lewis, William, Bichoutskaia, Elena, Tang, Chiu C., Blake, Alexander J., Cao, Rong, Schröder, Martin
Format: Article
Published: American Chemical Society 2014
Online Access:https://eprints.nottingham.ac.uk/35976/
Description
Summary:A robust binary hydrogen-bonded supramolecular organic framework (SOF-7) has been synthesized by solvothermal reaction of 1,4-bis-(4-(3,5-dicyano-2,6 dipyridyl)dihydropyridyl)benzene (1) and 5,5’-bis-(azanediyl)-oxalyl-diisophthalic acid (2). Single crystal X-ray diffraction analysis shows that SOF-7 comprises 2 and 1,4-bis-(4-(3,5-dicyano-2,6-dipyridyl)pyridyl)benzene (3), the latter formed in situ from the oxidative dehydrogenation of 1. SOF-7 shows a three-dimensional four-fold interpenetrat-ed structure with complementary O−H···N hydrogen bonds to form channels that are decorated with cyano- and amide-groups. SOF-7 exhibits excellent thermal stability and sol-vent and moisture durability, as well as permanent porosity. The activated desolvated material SOF-7a shows high CO2 sorption capacity and selectivity compared with other po-rous organic materials assembled solely through hydrogen bonding.