Novel multilevel hybrid inverter topology with power scalability
In this paper, a novel multilevel hybrid inverter is presented. The inverter is based on 2 floating capacitors and 16 active switches for five-level voltage waveform between the output of the inverter and neutral point of DC link. The proposed inverter structure, switching states and commutation sch...
| Main Authors: | , |
|---|---|
| Format: | Conference or Workshop Item |
| Published: |
2016
|
| Subjects: | |
| Online Access: | https://eprints.nottingham.ac.uk/35839/ |
| Summary: | In this paper, a novel multilevel hybrid inverter is presented. The inverter is based on 2 floating capacitors and 16 active switches for five-level voltage waveform between the output of the inverter and neutral point of DC link. The proposed inverter structure, switching states and commutation scheme for different output voltage levels are presented. The proposed topology is simulated and verified experimentally. The simulation results show that proposed topology can achieve higher efficiency in comparison to state-of-the-art hybrid topologies due to reduced conduction and switching losses at low modulation index and light load conditions. Experimental results show that the converter is successfully operated up to 1 kV DC link voltage and 12 kW output power. |
|---|