Spin dynamic simulations of solid effect DNP: the role of the relaxation superoperator
Relaxation plays a crucial role in the spin dynamics of dynamic nuclear polarisation. We review here two different strategies that have recently been used to incorporate relaxation in models to predict the spin dynamics of solid effect dynamic nuclear polarisation. A detailed explanation is provided...
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Published: |
2014
|
| Subjects: | |
| Online Access: | https://eprints.nottingham.ac.uk/35074/ |
| _version_ | 1848794997573287936 |
|---|---|
| author | Karabanov, Alexander Kwiatkowski, Grzegorz Köckenberger, Walter |
| author_facet | Karabanov, Alexander Kwiatkowski, Grzegorz Köckenberger, Walter |
| author_sort | Karabanov, Alexander |
| building | Nottingham Research Data Repository |
| collection | Online Access |
| description | Relaxation plays a crucial role in the spin dynamics of dynamic nuclear polarisation. We review here two different strategies that have recently been used to incorporate relaxation in models to predict the spin dynamics of solid effect dynamic nuclear polarisation. A detailed explanation is provided how the Lindblad-Kossakowski form of the master equation can be used to describe relaxation in a spin system. Fluctuations of the spin interactions with the environment as a cause of relaxation are discussed and it is demonstrated how the relaxation superoperator acting in Liouville space on the density operator can be derived in the Lindblad-Kossakowski form by averaging out non-secular terms in an appropriate interaction frame. Furthermore we provide a formalism for the derivation of the relaxation superoperator starting with a choice of a basis set in Hilbert space. We show that the differences in the prediction of the nuclear polarisation dynamics that are found for certain parameter choices arise from the use of different interaction frames in the two different strategies. In addition we provide a summary of different relaxation mechanism that need to be considered to obtain more realistic spin dynamic simulations of solid effect dynamic nuclear polarisation. |
| first_indexed | 2025-11-14T19:25:05Z |
| format | Article |
| id | nottingham-35074 |
| institution | University of Nottingham Malaysia Campus |
| institution_category | Local University |
| last_indexed | 2025-11-14T19:25:05Z |
| publishDate | 2014 |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | nottingham-350742020-05-04T16:50:47Z https://eprints.nottingham.ac.uk/35074/ Spin dynamic simulations of solid effect DNP: the role of the relaxation superoperator Karabanov, Alexander Kwiatkowski, Grzegorz Köckenberger, Walter Relaxation plays a crucial role in the spin dynamics of dynamic nuclear polarisation. We review here two different strategies that have recently been used to incorporate relaxation in models to predict the spin dynamics of solid effect dynamic nuclear polarisation. A detailed explanation is provided how the Lindblad-Kossakowski form of the master equation can be used to describe relaxation in a spin system. Fluctuations of the spin interactions with the environment as a cause of relaxation are discussed and it is demonstrated how the relaxation superoperator acting in Liouville space on the density operator can be derived in the Lindblad-Kossakowski form by averaging out non-secular terms in an appropriate interaction frame. Furthermore we provide a formalism for the derivation of the relaxation superoperator starting with a choice of a basis set in Hilbert space. We show that the differences in the prediction of the nuclear polarisation dynamics that are found for certain parameter choices arise from the use of different interaction frames in the two different strategies. In addition we provide a summary of different relaxation mechanism that need to be considered to obtain more realistic spin dynamic simulations of solid effect dynamic nuclear polarisation. 2014-07-18 Article PeerReviewed Karabanov, Alexander, Kwiatkowski, Grzegorz and Köckenberger, Walter (2014) Spin dynamic simulations of solid effect DNP: the role of the relaxation superoperator. Molecular Physics, 112 (14). pp. 1838-1854. ISSN 0026-8976 Lindblad–Kossakowski master equation Liouville space solid effect dynamic nuclear polarisation relaxation superoperator spin dynamics http://www.tandfonline.com/doi/full/10.1080/00268976.2014.884287 doi:10.1080/00268976.2014.884287 doi:10.1080/00268976.2014.884287 |
| spellingShingle | Lindblad–Kossakowski master equation Liouville space solid effect dynamic nuclear polarisation relaxation superoperator spin dynamics Karabanov, Alexander Kwiatkowski, Grzegorz Köckenberger, Walter Spin dynamic simulations of solid effect DNP: the role of the relaxation superoperator |
| title | Spin dynamic simulations of solid effect DNP: the role of the relaxation superoperator |
| title_full | Spin dynamic simulations of solid effect DNP: the role of the relaxation superoperator |
| title_fullStr | Spin dynamic simulations of solid effect DNP: the role of the relaxation superoperator |
| title_full_unstemmed | Spin dynamic simulations of solid effect DNP: the role of the relaxation superoperator |
| title_short | Spin dynamic simulations of solid effect DNP: the role of the relaxation superoperator |
| title_sort | spin dynamic simulations of solid effect dnp: the role of the relaxation superoperator |
| topic | Lindblad–Kossakowski master equation Liouville space solid effect dynamic nuclear polarisation relaxation superoperator spin dynamics |
| url | https://eprints.nottingham.ac.uk/35074/ https://eprints.nottingham.ac.uk/35074/ https://eprints.nottingham.ac.uk/35074/ |