Everettian quantum mechanics and physical probability: Against the principle of “State Supervenience”
Everettian quantum mechanics faces the challenge of how to make sense of probability and probabilistic reasoning in a setting where there is typically no unique outcome of measurements. Wallace has built on a proof by Deutsch to argue that a notion of probability can be recovered in the many worlds...
| Main Author: | |
|---|---|
| Format: | Article |
| Published: |
Elsevier
2016
|
| Subjects: | |
| Online Access: | https://eprints.nottingham.ac.uk/34899/ |
| Summary: | Everettian quantum mechanics faces the challenge of how to make sense of probability and probabilistic reasoning in a setting where there is typically no unique outcome of measurements. Wallace has built on a proof by Deutsch to argue that a notion of probability can be recovered in the many worlds setting. In particular, Wallace argues that a rational agent has to assign probabilities in accordance with the Born rule. This argument relies on a rationality constraint that Wallace calls state supervenience. I argue that state supervenience is not defensible as a rationality constraint for Everettian agents unless we already invoke probabilistic notions. |
|---|