Modified choice function heuristic selection for the multidimensional knapsack problem

Hyper-heuristics are a class of high-level search methods used to solve computationally difficult problems, which operate on a search space of low-level heuristics rather than solutions directly. Previous work has shown that selection hyper-heuristics are able to solve many combinatorial optimisatio...

Full description

Bibliographic Details
Main Authors: Drake, John H., Özcan, Ender, Burke, Edmund K.
Format: Book Section
Published: Springer 2014
Subjects:
Online Access:https://eprints.nottingham.ac.uk/33941/
Description
Summary:Hyper-heuristics are a class of high-level search methods used to solve computationally difficult problems, which operate on a search space of low-level heuristics rather than solutions directly. Previous work has shown that selection hyper-heuristics are able to solve many combinatorial optimisation problems, including the multidimensional 0-1 knapsack problem (MKP). The traditional framework for iterative selection hyper-heuristics relies on two key components, a heuristic selection method and a move acceptance criterion. Existing work has shown that a hyper-heuristic using Modified Choice Function heuristic selection can be effective at solving problems in multiple problem domains. Late Acceptance Strategy is a hill climbing metaheuristic strategy often used as a move acceptance criteria in selection hyper-heuristics. This work compares a Modified Choice Function - Late Acceptance Strategy hyper-heuristic to an existing selection hyper-heuristic method from the literature which has previously performed well on standard MKP benchmarks.