| Summary: | Many real world problems can be solved effectively by metaheuristics in combination with neighbourhood search. However, implementing neighbourhood search for a particular problem domain can be time consuming and so it is important to get the most value from it. Hyper-heuristics aim to get such value by using a specific API such as
`HyFlex' to cleanly separate the search control structure from the details of the domain. Here, we discuss various longer-term additions to the HyFlex interface that will allow much richer information exchange, and so enhance learning via data science techniques, but without losing domain independence of the search control.
|