Calculating correct compilers

In this article we present a new approach to the problem of calculating compilers. In particular, we develop a simple but general technique that allows us to derive correct compilers from high- level semantics by systematic calculation, with all details of the implementation of the compilers falling...

Full description

Bibliographic Details
Main Authors: Bahr, Patrick, Hutton, Graham
Format: Article
Published: Cambridge University Press 2015
Online Access:https://eprints.nottingham.ac.uk/32702/
Description
Summary:In this article we present a new approach to the problem of calculating compilers. In particular, we develop a simple but general technique that allows us to derive correct compilers from high- level semantics by systematic calculation, with all details of the implementation of the compilers falling naturally out of the calculation process. Our approach is based upon the use of standard equational reasoning techniques, and has been applied to calculate compilers for a wide range of language features and their combination, including arithmetic expressions, exceptions, state, various forms of lambda calculi, bounded and unbounded loops, non-determinism, and interrupts. All the calculations in the article have been formalised using the Coq proof assistant, which serves as a convenient interactive tool for developing and verifying the calculations.