An abstract analysis of optimal goal-oriented adaptivity

We provide an abstract framework for optimal goal-oriented adaptivity for finite element methods and boundary element methods in the spirit of (Carstensen, Feischl, Page, and Praetorius, Axioms of adaptivity, Comput. Math. Appl., 67 (2014), pp. 1195–1253). We prove that this framework covers standar...

Full description

Bibliographic Details
Main Authors: Feischl, Michael, Praetorius, Dirk, van der Zee, Kristoffer George
Format: Article
Published: Society for Industrial and Applied Mathematics 2016
Subjects:
Online Access:https://eprints.nottingham.ac.uk/32679/
_version_ 1848794465729249280
author Feischl, Michael
Praetorius, Dirk
van der Zee, Kristoffer George
author_facet Feischl, Michael
Praetorius, Dirk
van der Zee, Kristoffer George
author_sort Feischl, Michael
building Nottingham Research Data Repository
collection Online Access
description We provide an abstract framework for optimal goal-oriented adaptivity for finite element methods and boundary element methods in the spirit of (Carstensen, Feischl, Page, and Praetorius, Axioms of adaptivity, Comput. Math. Appl., 67 (2014), pp. 1195–1253). We prove that this framework covers standard discretizations of general second-order linear elliptic PDEs and hence generalizes available results beyond the Poisson equation.
first_indexed 2025-11-14T19:16:38Z
format Article
id nottingham-32679
institution University of Nottingham Malaysia Campus
institution_category Local University
last_indexed 2025-11-14T19:16:38Z
publishDate 2016
publisher Society for Industrial and Applied Mathematics
recordtype eprints
repository_type Digital Repository
spelling nottingham-326792020-05-04T17:52:04Z https://eprints.nottingham.ac.uk/32679/ An abstract analysis of optimal goal-oriented adaptivity Feischl, Michael Praetorius, Dirk van der Zee, Kristoffer George We provide an abstract framework for optimal goal-oriented adaptivity for finite element methods and boundary element methods in the spirit of (Carstensen, Feischl, Page, and Praetorius, Axioms of adaptivity, Comput. Math. Appl., 67 (2014), pp. 1195–1253). We prove that this framework covers standard discretizations of general second-order linear elliptic PDEs and hence generalizes available results beyond the Poisson equation. Society for Industrial and Applied Mathematics 2016-05-12 Article PeerReviewed Feischl, Michael, Praetorius, Dirk and van der Zee, Kristoffer George (2016) An abstract analysis of optimal goal-oriented adaptivity. SIAM Journal on Numerical Analysis, 54 (3). pp. 1423-1448. ISSN 1095-7170 Adaptivity goal-oriented algorithm quantity of interest convergence optimal convergence rates finite element method boundary element method http://epubs.siam.org/doi/abs/10.1137/15M1021982 doi:10.1137/15M1021982 doi:10.1137/15M1021982
spellingShingle Adaptivity
goal-oriented algorithm
quantity of interest
convergence
optimal convergence rates
finite element method
boundary element method
Feischl, Michael
Praetorius, Dirk
van der Zee, Kristoffer George
An abstract analysis of optimal goal-oriented adaptivity
title An abstract analysis of optimal goal-oriented adaptivity
title_full An abstract analysis of optimal goal-oriented adaptivity
title_fullStr An abstract analysis of optimal goal-oriented adaptivity
title_full_unstemmed An abstract analysis of optimal goal-oriented adaptivity
title_short An abstract analysis of optimal goal-oriented adaptivity
title_sort abstract analysis of optimal goal-oriented adaptivity
topic Adaptivity
goal-oriented algorithm
quantity of interest
convergence
optimal convergence rates
finite element method
boundary element method
url https://eprints.nottingham.ac.uk/32679/
https://eprints.nottingham.ac.uk/32679/
https://eprints.nottingham.ac.uk/32679/