Methods for the investigation of work and human errors in rail engineering contexts

It is important to study accidents and their underlying causes, in order to generate recommendations for improving system safety. A range of methods have been developed in various industries, to understand how accidents have occurred, as well as identify potential human errors in systems. Theorie...

Full description

Bibliographic Details
Main Author: Farooqi, Aaisha Tasneem
Format: Thesis (University of Nottingham only)
Language:English
Published: 2016
Subjects:
Online Access:https://eprints.nottingham.ac.uk/32114/
_version_ 1848794337516716032
author Farooqi, Aaisha Tasneem
author_facet Farooqi, Aaisha Tasneem
author_sort Farooqi, Aaisha Tasneem
building Nottingham Research Data Repository
collection Online Access
description It is important to study accidents and their underlying causes, in order to generate recommendations for improving system safety. A range of methods have been developed in various industries, to understand how accidents have occurred, as well as identify potential human errors in systems. Theories of accident causation, and the development of safety models and methods have evolved over the last few decades. However, the majority of accident analysis methods fail to account for the increasing complexity of socio-technical systems (Hollnagel, 2004 and Lindberg et al. 2010). Much of the previous research has taken a safety I perspective, which considers successful performance as reducing the number of adverse outcomes to as low as possible (Hollnagel, 2014). According to Hollnagel (2014) however, it is important to understand how operators actually carry out work (‘work-as-done’), rather than as it should be carried out (‘work-as-imagined’), to understand how normal variabilities and flexibilities in performance contribute towards both successful and unsuccessful performance. Understanding how work is normally carried out is essential for understanding how it can go wrong. This includes understanding how success is obtained, for example how people adjust their performance in the face of changing conditions and demands, and limited resources (such as time and information). Although variability and flexibility in performance are prerequisites for success and productivity, these can also explain why things can go wrong (Hollnagel, 2014). Understanding normal work (or ‘work-as-done’) is the basis of the safety II perspective, which views safety as increasing the number of things that go right. So far however, there seems to be little application of this safety II perspective in the rail industry. Research in this thesis addresses this gap, by examining whether understanding normal performance in rail engineering contexts contributes towards identifying how incidents occur, and measures for improving safety, compared to the use of existing methods. A range of different methods were used to address the aims of this thesis. Rail incident reports were analysed to understand sources of human errors in rail contexts. Observations were also conducted of operators carrying out work, to understand the opportunities for human errors associated with rail engineering processes. To understand cognitive demands and strategies associated with normal work, a cognitive task analysis was carried out. FRAM (Functional Resonance Analysis Method) (Hollnagel, 2012) wasalso used to determine how incidents may develop, and whether everyday performance can contribute towards successful and unsuccessful performance. Participants in semi-structured interviews and workshops were asked to identify strengths and limitations of various human reliability assessment methods, and offer opinions on their practical applicability. Benefits of understanding normal work included a greater understanding of how human errors can occur (by identifying cognitive demands that contribute towards the occurrence of different error types), and how cognitive strategies can reduce human errors and contribute towards acceptable performance. It was demonstrated how variabilities and flexibilities in performance can contribute towards successful and productive performance, as well as explain why things can go wrong (supporting Hollnagel, 2014). This is especially important to consider, since human errors were not easily identified from rail incident reports and observations of operators carrying out work. System safety can therefore be improved by increasing things that can go right, rather than just decreasing the things that can go wrong (Hollnagel, 2014). Participants in a workshop, however, identified that FRAM may be time consuming to apply, especially for more complex systems. Further research is recommended for the development of a toolkit, from which both practitioners and researchers can choose from a range of different methods. To further understand factors affecting acceptable performance, it is recommended that further data are collected to determine whether varying levels of cognitive demands affect performance, and whether these influence the implementation of cognitive strategies.
first_indexed 2025-11-14T19:14:35Z
format Thesis (University of Nottingham only)
id nottingham-32114
institution University of Nottingham Malaysia Campus
institution_category Local University
language English
last_indexed 2025-11-14T19:14:35Z
publishDate 2016
recordtype eprints
repository_type Digital Repository
spelling nottingham-321142025-02-28T13:23:52Z https://eprints.nottingham.ac.uk/32114/ Methods for the investigation of work and human errors in rail engineering contexts Farooqi, Aaisha Tasneem It is important to study accidents and their underlying causes, in order to generate recommendations for improving system safety. A range of methods have been developed in various industries, to understand how accidents have occurred, as well as identify potential human errors in systems. Theories of accident causation, and the development of safety models and methods have evolved over the last few decades. However, the majority of accident analysis methods fail to account for the increasing complexity of socio-technical systems (Hollnagel, 2004 and Lindberg et al. 2010). Much of the previous research has taken a safety I perspective, which considers successful performance as reducing the number of adverse outcomes to as low as possible (Hollnagel, 2014). According to Hollnagel (2014) however, it is important to understand how operators actually carry out work (‘work-as-done’), rather than as it should be carried out (‘work-as-imagined’), to understand how normal variabilities and flexibilities in performance contribute towards both successful and unsuccessful performance. Understanding how work is normally carried out is essential for understanding how it can go wrong. This includes understanding how success is obtained, for example how people adjust their performance in the face of changing conditions and demands, and limited resources (such as time and information). Although variability and flexibility in performance are prerequisites for success and productivity, these can also explain why things can go wrong (Hollnagel, 2014). Understanding normal work (or ‘work-as-done’) is the basis of the safety II perspective, which views safety as increasing the number of things that go right. So far however, there seems to be little application of this safety II perspective in the rail industry. Research in this thesis addresses this gap, by examining whether understanding normal performance in rail engineering contexts contributes towards identifying how incidents occur, and measures for improving safety, compared to the use of existing methods. A range of different methods were used to address the aims of this thesis. Rail incident reports were analysed to understand sources of human errors in rail contexts. Observations were also conducted of operators carrying out work, to understand the opportunities for human errors associated with rail engineering processes. To understand cognitive demands and strategies associated with normal work, a cognitive task analysis was carried out. FRAM (Functional Resonance Analysis Method) (Hollnagel, 2012) wasalso used to determine how incidents may develop, and whether everyday performance can contribute towards successful and unsuccessful performance. Participants in semi-structured interviews and workshops were asked to identify strengths and limitations of various human reliability assessment methods, and offer opinions on their practical applicability. Benefits of understanding normal work included a greater understanding of how human errors can occur (by identifying cognitive demands that contribute towards the occurrence of different error types), and how cognitive strategies can reduce human errors and contribute towards acceptable performance. It was demonstrated how variabilities and flexibilities in performance can contribute towards successful and productive performance, as well as explain why things can go wrong (supporting Hollnagel, 2014). This is especially important to consider, since human errors were not easily identified from rail incident reports and observations of operators carrying out work. System safety can therefore be improved by increasing things that can go right, rather than just decreasing the things that can go wrong (Hollnagel, 2014). Participants in a workshop, however, identified that FRAM may be time consuming to apply, especially for more complex systems. Further research is recommended for the development of a toolkit, from which both practitioners and researchers can choose from a range of different methods. To further understand factors affecting acceptable performance, it is recommended that further data are collected to determine whether varying levels of cognitive demands affect performance, and whether these influence the implementation of cognitive strategies. 2016-07-15 Thesis (University of Nottingham only) NonPeerReviewed application/pdf en arr https://eprints.nottingham.ac.uk/32114/1/Thesis_Black.pdf Farooqi, Aaisha Tasneem (2016) Methods for the investigation of work and human errors in rail engineering contexts. PhD thesis, University of Nottingham. Rail engineering rail accidents human error rail safety
spellingShingle Rail engineering
rail accidents
human error
rail safety
Farooqi, Aaisha Tasneem
Methods for the investigation of work and human errors in rail engineering contexts
title Methods for the investigation of work and human errors in rail engineering contexts
title_full Methods for the investigation of work and human errors in rail engineering contexts
title_fullStr Methods for the investigation of work and human errors in rail engineering contexts
title_full_unstemmed Methods for the investigation of work and human errors in rail engineering contexts
title_short Methods for the investigation of work and human errors in rail engineering contexts
title_sort methods for the investigation of work and human errors in rail engineering contexts
topic Rail engineering
rail accidents
human error
rail safety
url https://eprints.nottingham.ac.uk/32114/