| Summary: | Scanning near-field infrared microscopy (SNIM) potentially enables subdiffraction, broadband mid-infrared (MIR:3–25-μm wavelength range) spectral-mapping of human cells and tissue for real-time molecular sensing, with prospective use in disease diagnosis. SNIM requires an MIR-transmitting tip of small aperture for photon collection. Here, chalcogenide-glass optical fibers are reproducibly tapered at one end to form a MIR transmitting tip for SNIM. A wet-etching method is used to form the tip. The tapering sides of the tip are Al-coated. These Al-coated tapered-tips exhibit near-field power-confinement when acting either as the launch-end or exit-end of the MIR optical fiber. We report first time optimal cleaving of the end of the tapered tip using focused ion beam milling. A flat aperture is produced at the end of the tip, which is orthogonal to the fiber-axis and of controlled diameter. A FIB-cleaved aperture is used to collect MIR spectra of cells mounted on a transflection plate, under illumination of a synchrotron- generated wideband MIR beam.
|