300 faces in-the-wild challenge: database and results
Computer Vision has recently witnessed great research advance towards automatic facial points detection. Numerous methodologies have been proposed during the last few years that achieve accurate and efficient performance. However, fair comparison between these methodologies is infeasible mainly due...
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Published: |
Elsevier
2016
|
| Subjects: | |
| Online Access: | https://eprints.nottingham.ac.uk/31549/ |
| _version_ | 1848794224782213120 |
|---|---|
| author | Sagonas, Christos Antonakos, Epameinondas Tzimiropoulos, Georgios Zafeiriou, Stefanos Pantic, Maja |
| author_facet | Sagonas, Christos Antonakos, Epameinondas Tzimiropoulos, Georgios Zafeiriou, Stefanos Pantic, Maja |
| author_sort | Sagonas, Christos |
| building | Nottingham Research Data Repository |
| collection | Online Access |
| description | Computer Vision has recently witnessed great research advance towards automatic facial points detection. Numerous methodologies have been proposed during the last few years that achieve accurate and efficient performance. However, fair comparison between these methodologies is infeasible mainly due to two issues. (a) Most existing databases, captured under both constrained and unconstrained (in-the-wild) conditions have been annotated using different mark-ups and, in most cases, the accuracy of the annotations is low. (b) Most published works report experimental results using different training/testing sets, different error metrics and, of course, landmark points with semantically different locations. In this paper, we aim to overcome the aforementioned problems by (a) proposing a semi-automatic annotation technique that was employed to re-annotate most existing facial databases under a unified protocol, and (b) presenting the 300 Faces In-The-Wild Challenge (300-W), the first facial landmark localization challenge that was organized twice, in 2013 and 2015. To the best of our knowledge, this is the first effort towards a unified annotation scheme of massive databases and a fair experimental comparison of existing facial landmark localization systems. The images and annotations of the new testing database that was used in the 300-W challenge are available from http://ibug.doc.ic.ac.uk/resources/facial-point-annotations/ |
| first_indexed | 2025-11-14T19:12:48Z |
| format | Article |
| id | nottingham-31549 |
| institution | University of Nottingham Malaysia Campus |
| institution_category | Local University |
| last_indexed | 2025-11-14T19:12:48Z |
| publishDate | 2016 |
| publisher | Elsevier |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | nottingham-315492020-05-04T17:30:20Z https://eprints.nottingham.ac.uk/31549/ 300 faces in-the-wild challenge: database and results Sagonas, Christos Antonakos, Epameinondas Tzimiropoulos, Georgios Zafeiriou, Stefanos Pantic, Maja Computer Vision has recently witnessed great research advance towards automatic facial points detection. Numerous methodologies have been proposed during the last few years that achieve accurate and efficient performance. However, fair comparison between these methodologies is infeasible mainly due to two issues. (a) Most existing databases, captured under both constrained and unconstrained (in-the-wild) conditions have been annotated using different mark-ups and, in most cases, the accuracy of the annotations is low. (b) Most published works report experimental results using different training/testing sets, different error metrics and, of course, landmark points with semantically different locations. In this paper, we aim to overcome the aforementioned problems by (a) proposing a semi-automatic annotation technique that was employed to re-annotate most existing facial databases under a unified protocol, and (b) presenting the 300 Faces In-The-Wild Challenge (300-W), the first facial landmark localization challenge that was organized twice, in 2013 and 2015. To the best of our knowledge, this is the first effort towards a unified annotation scheme of massive databases and a fair experimental comparison of existing facial landmark localization systems. The images and annotations of the new testing database that was used in the 300-W challenge are available from http://ibug.doc.ic.ac.uk/resources/facial-point-annotations/ Elsevier 2016-01-25 Article PeerReviewed Sagonas, Christos, Antonakos, Epameinondas, Tzimiropoulos, Georgios, Zafeiriou, Stefanos and Pantic, Maja (2016) 300 faces in-the-wild challenge: database and results. Image and Vision Computing . ISSN 0262-8856 facial landmark localization; challenge; semi-automatic annotation tool; facial database http://www.sciencedirect.com/science/article/pii/S0262885616000147 |
| spellingShingle | facial landmark localization; challenge; semi-automatic annotation tool; facial database Sagonas, Christos Antonakos, Epameinondas Tzimiropoulos, Georgios Zafeiriou, Stefanos Pantic, Maja 300 faces in-the-wild challenge: database and results |
| title | 300 faces in-the-wild challenge: database and results |
| title_full | 300 faces in-the-wild challenge: database and results |
| title_fullStr | 300 faces in-the-wild challenge: database and results |
| title_full_unstemmed | 300 faces in-the-wild challenge: database and results |
| title_short | 300 faces in-the-wild challenge: database and results |
| title_sort | 300 faces in-the-wild challenge: database and results |
| topic | facial landmark localization; challenge; semi-automatic annotation tool; facial database |
| url | https://eprints.nottingham.ac.uk/31549/ https://eprints.nottingham.ac.uk/31549/ |