A semi-automatic methodology for facial landmark annotation

Developing powerful deformable face models requires massive, annotated face databases on which techniques can be trained, validated and tested. Manual annotation of each facial image in terms of landmarks requires a trained expert and the workload is usually enormous. Fatigue is one of the reasons t...

Full description

Bibliographic Details
Main Authors: Sagonas, Christos, Tzimiropoulos, Georgios, Zafeiriou, Stefanos, Pantic, Maja
Format: Conference or Workshop Item
Language:English
Published: 2013
Subjects:
Online Access:https://eprints.nottingham.ac.uk/31432/
Description
Summary:Developing powerful deformable face models requires massive, annotated face databases on which techniques can be trained, validated and tested. Manual annotation of each facial image in terms of landmarks requires a trained expert and the workload is usually enormous. Fatigue is one of the reasons that in some cases annotations are inaccurate. This is why, the majority of existing facial databases provide annotations for a relatively small subset of the training images. Furthermore, there is hardly any correspondence between the annotated landmarks across different databases. These problems make cross-database experiments almost infeasible. To overcome these difficulties, we propose a semi-automatic annotation methodology for annotating massive face datasets. This is the first attempt to create a tool suitable for annotating massive facial databases. We employed our tool for creating annotations for MultiPIE, XM2VTS, AR, and FRGC Ver. 2 databases. The annotations will be made publicly available from http://ibug.doc.ic.ac.uk/ resources/facial-point-annotations/. Finally, we present experiments which verify the accuracy of produced annotations.