Robust learning from normals for 3D face recognition

We introduce novel subspace-based methods for learning from the azimuth angle of surface normals for 3D face recognition. We show that the normal azimuth angles combined with Principal Component Analysis (PCA) using a cosine-based distance measure can be used for robust face recognition from facial...

Full description

Bibliographic Details
Main Authors: Marras, Ioannis, Zafeiriou, Stefanos, Tzimiropoulos, Georgios
Format: Article
Published: Springer Verlag 2012
Online Access:https://eprints.nottingham.ac.uk/31429/
Description
Summary:We introduce novel subspace-based methods for learning from the azimuth angle of surface normals for 3D face recognition. We show that the normal azimuth angles combined with Principal Component Analysis (PCA) using a cosine-based distance measure can be used for robust face recognition from facial surfaces. The proposed algorithms are well-suited for all types of 3D facial data including data produced by range cameras (depth images), photometric stereo (PS) and shade-from-X (SfX) algorithms. We demonstrate the robustness of the proposed algorithms both in 3D face reconstruction from synthetically occluded samples, as well as, in face recognition using the FRGC v2 3D face database and the recently collected Photoface database where the proposed method achieves state-of-the-art results. An important aspect of our method is that it can achieve good face recognition/verification performance by using raw 3D scans without any heavy preprocessing (i.e., model fitting, surface smoothing etc.).