Genomic analysis of serogroup Y Neisseria meningitidis isolates reveals extensive similarities between carriage and disease-associated organisms

Background. Neisseria meningitidis is a frequent colonizer of the human nasopharynx with asymptomatic carriage providing the reservoir for invasive, disease-causing strains. Serogroup Y (MenY) strains are a major cause of meningococcal disease. High resolution genetic analyses of carriage and diseas...

Full description

Bibliographic Details
Main Authors: Oldfield, Neil J., Harrison, Odile B., Bayliss, Christopher D., Maiden, Martin C.J., Ala'Aldeen, Dlawer A.A., Turner, David P.J.
Format: Article
Published: Oxford University Press 2016
Subjects:
Online Access:https://eprints.nottingham.ac.uk/31313/
Description
Summary:Background. Neisseria meningitidis is a frequent colonizer of the human nasopharynx with asymptomatic carriage providing the reservoir for invasive, disease-causing strains. Serogroup Y (MenY) strains are a major cause of meningococcal disease. High resolution genetic analyses of carriage and disease isolates can establish epidemiological relationships and identify potential virulence factors. Methods. Whole genome sequence data were obtained from UK MenY carriage isolates from 1997-2010 (n=99). Sequences were compared to those from MenY invasive isolates from 2010 and 2011 (n=73) using a gene-by-gene approach. Results. Comparisons across 1,605 core genes resolved 91% of isolates into one of eight clusters containing closely related disease and carriage isolates. Six clusters contained carried meningococci isolated in 1997-2001 suggesting temporal stability. One cluster of isolates, predominately sharing the designation Y: P1.5-1,10-1: F4-1: ST-1655 (cc23), was resolved into a sub-cluster with 86% carriage isolates and a second with 90% invasive isolates. These subclusters were defined by specific allelic differences in five core genes encoding glycerate kinase (glxK), valine-pyruvate transaminase (avtA), superoxide dismutase (sodB) and two hypothetical proteins. Conclusions. High resolution genetic analyses detected long-term temporal stability and temporally-overlapping carriage and disease populations for MenY clones but also evidence of a disease-associated clone.