Non-perturbative calculation of molecular magnetic properties within current-density functional theory

We present a novel implementation of Kohn-Sham density-functional theory utilizing London atomic orbitals as basis functions. External magnetic elds are treated non-perturbatively, which enables the study of both magnetic response properties and the effects of strong fields, using either standard de...

Full description

Bibliographic Details
Main Authors: Tellgren, Erik I., Teale, Andrew M., Furness, James W., Lange, K.K., Ekström, Ulf, Helgaker, Trygve
Format: Article
Published: American Institute of Physics 2014
Online Access:https://eprints.nottingham.ac.uk/31104/
Description
Summary:We present a novel implementation of Kohn-Sham density-functional theory utilizing London atomic orbitals as basis functions. External magnetic elds are treated non-perturbatively, which enables the study of both magnetic response properties and the effects of strong fields, using either standard density functionals or current-density functionals - the implementation is the first fully self-consistent implementation of the latter for molecules. Pilot applications are presented for the finite-field calculation of molecular magnetizabilities, hypermagnetizabilities and nuclear magnetic resonance shielding constants, focusing on the impact of current-density functionals on the accuracy of the results. Existing current-density functionals based on the gauge-invariant vorticity are tested and found to be sensitive to numerical details of their implementation. Furthermore, when appropriately regularized, the resulting magnetic properties show no improvement over standard density-functional results. An advantage of the present implementation is the ability to apply density-functional theory to molecules in very strong magnetic fields, where the perturbative approach breaks down. Comparison with high accuracy full-conguration-interaction results shows that the inadequacies of current-density approximations are exacerbated with increasing magnetic field strength. Standard density-functionals remain well behaved but fail to deliver high accuracy. The need for improved current-dependent density-functionals, and how they may be tested using the presented implementation, is discussed in light of our findings.