Mirror symmetry and the classification of orbifold del Pezzo surfaces

We state a number of conjectures that together allow one to classify a broad class of del Pezzo surfaces with cyclic quotient singularities using mirror symmetry. We prove our conjectures in the simplest cases. The conjectures relate mutation-equivalence classes of Fano polygons with Q-Gorenstein de...

Full description

Bibliographic Details
Main Authors: Akhtar, Mohammad, Coates, Tom, Corti, Alessio, Heuberger, Liana, Kasprzyk, Alexander M., Oneto, Alessandro, Petracci, Andrea, Prince, Thomas, Tveiten, Ketil
Format: Article
Published: American Mathematical Society 2016
Online Access:https://eprints.nottingham.ac.uk/31071/
_version_ 1848794122141302784
author Akhtar, Mohammad
Coates, Tom
Corti, Alessio
Heuberger, Liana
Kasprzyk, Alexander M.
Oneto, Alessandro
Petracci, Andrea
Prince, Thomas
Tveiten, Ketil
author_facet Akhtar, Mohammad
Coates, Tom
Corti, Alessio
Heuberger, Liana
Kasprzyk, Alexander M.
Oneto, Alessandro
Petracci, Andrea
Prince, Thomas
Tveiten, Ketil
author_sort Akhtar, Mohammad
building Nottingham Research Data Repository
collection Online Access
description We state a number of conjectures that together allow one to classify a broad class of del Pezzo surfaces with cyclic quotient singularities using mirror symmetry. We prove our conjectures in the simplest cases. The conjectures relate mutation-equivalence classes of Fano polygons with Q-Gorenstein deformation classes of del Pezzo surfaces.
first_indexed 2025-11-14T19:11:10Z
format Article
id nottingham-31071
institution University of Nottingham Malaysia Campus
institution_category Local University
last_indexed 2025-11-14T19:11:10Z
publishDate 2016
publisher American Mathematical Society
recordtype eprints
repository_type Digital Repository
spelling nottingham-310712020-05-04T20:03:57Z https://eprints.nottingham.ac.uk/31071/ Mirror symmetry and the classification of orbifold del Pezzo surfaces Akhtar, Mohammad Coates, Tom Corti, Alessio Heuberger, Liana Kasprzyk, Alexander M. Oneto, Alessandro Petracci, Andrea Prince, Thomas Tveiten, Ketil We state a number of conjectures that together allow one to classify a broad class of del Pezzo surfaces with cyclic quotient singularities using mirror symmetry. We prove our conjectures in the simplest cases. The conjectures relate mutation-equivalence classes of Fano polygons with Q-Gorenstein deformation classes of del Pezzo surfaces. American Mathematical Society 2016-02 Article PeerReviewed Akhtar, Mohammad, Coates, Tom, Corti, Alessio, Heuberger, Liana, Kasprzyk, Alexander M., Oneto, Alessandro, Petracci, Andrea, Prince, Thomas and Tveiten, Ketil (2016) Mirror symmetry and the classification of orbifold del Pezzo surfaces. Proceedings of the American Mathematical Society, 144 (2). pp. 513-527. ISSN 1088-6826 http://dx.doi.org/10.1090/proc/12876 doi:10.1090/proc/12876 doi:10.1090/proc/12876
spellingShingle Akhtar, Mohammad
Coates, Tom
Corti, Alessio
Heuberger, Liana
Kasprzyk, Alexander M.
Oneto, Alessandro
Petracci, Andrea
Prince, Thomas
Tveiten, Ketil
Mirror symmetry and the classification of orbifold del Pezzo surfaces
title Mirror symmetry and the classification of orbifold del Pezzo surfaces
title_full Mirror symmetry and the classification of orbifold del Pezzo surfaces
title_fullStr Mirror symmetry and the classification of orbifold del Pezzo surfaces
title_full_unstemmed Mirror symmetry and the classification of orbifold del Pezzo surfaces
title_short Mirror symmetry and the classification of orbifold del Pezzo surfaces
title_sort mirror symmetry and the classification of orbifold del pezzo surfaces
url https://eprints.nottingham.ac.uk/31071/
https://eprints.nottingham.ac.uk/31071/
https://eprints.nottingham.ac.uk/31071/