Mirror symmetry and the classification of orbifold del Pezzo surfaces
We state a number of conjectures that together allow one to classify a broad class of del Pezzo surfaces with cyclic quotient singularities using mirror symmetry. We prove our conjectures in the simplest cases. The conjectures relate mutation-equivalence classes of Fano polygons with Q-Gorenstein de...
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Published: |
American Mathematical Society
2016
|
| Online Access: | https://eprints.nottingham.ac.uk/31071/ |
| _version_ | 1848794122141302784 |
|---|---|
| author | Akhtar, Mohammad Coates, Tom Corti, Alessio Heuberger, Liana Kasprzyk, Alexander M. Oneto, Alessandro Petracci, Andrea Prince, Thomas Tveiten, Ketil |
| author_facet | Akhtar, Mohammad Coates, Tom Corti, Alessio Heuberger, Liana Kasprzyk, Alexander M. Oneto, Alessandro Petracci, Andrea Prince, Thomas Tveiten, Ketil |
| author_sort | Akhtar, Mohammad |
| building | Nottingham Research Data Repository |
| collection | Online Access |
| description | We state a number of conjectures that together allow one to classify a broad class of del Pezzo surfaces with cyclic quotient singularities using mirror symmetry. We prove our conjectures in the simplest cases. The conjectures relate mutation-equivalence classes of Fano polygons with Q-Gorenstein deformation classes of del Pezzo surfaces. |
| first_indexed | 2025-11-14T19:11:10Z |
| format | Article |
| id | nottingham-31071 |
| institution | University of Nottingham Malaysia Campus |
| institution_category | Local University |
| last_indexed | 2025-11-14T19:11:10Z |
| publishDate | 2016 |
| publisher | American Mathematical Society |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | nottingham-310712020-05-04T20:03:57Z https://eprints.nottingham.ac.uk/31071/ Mirror symmetry and the classification of orbifold del Pezzo surfaces Akhtar, Mohammad Coates, Tom Corti, Alessio Heuberger, Liana Kasprzyk, Alexander M. Oneto, Alessandro Petracci, Andrea Prince, Thomas Tveiten, Ketil We state a number of conjectures that together allow one to classify a broad class of del Pezzo surfaces with cyclic quotient singularities using mirror symmetry. We prove our conjectures in the simplest cases. The conjectures relate mutation-equivalence classes of Fano polygons with Q-Gorenstein deformation classes of del Pezzo surfaces. American Mathematical Society 2016-02 Article PeerReviewed Akhtar, Mohammad, Coates, Tom, Corti, Alessio, Heuberger, Liana, Kasprzyk, Alexander M., Oneto, Alessandro, Petracci, Andrea, Prince, Thomas and Tveiten, Ketil (2016) Mirror symmetry and the classification of orbifold del Pezzo surfaces. Proceedings of the American Mathematical Society, 144 (2). pp. 513-527. ISSN 1088-6826 http://dx.doi.org/10.1090/proc/12876 doi:10.1090/proc/12876 doi:10.1090/proc/12876 |
| spellingShingle | Akhtar, Mohammad Coates, Tom Corti, Alessio Heuberger, Liana Kasprzyk, Alexander M. Oneto, Alessandro Petracci, Andrea Prince, Thomas Tveiten, Ketil Mirror symmetry and the classification of orbifold del Pezzo surfaces |
| title | Mirror symmetry and the classification of orbifold del Pezzo surfaces |
| title_full | Mirror symmetry and the classification of orbifold del Pezzo surfaces |
| title_fullStr | Mirror symmetry and the classification of orbifold del Pezzo surfaces |
| title_full_unstemmed | Mirror symmetry and the classification of orbifold del Pezzo surfaces |
| title_short | Mirror symmetry and the classification of orbifold del Pezzo surfaces |
| title_sort | mirror symmetry and the classification of orbifold del pezzo surfaces |
| url | https://eprints.nottingham.ac.uk/31071/ https://eprints.nottingham.ac.uk/31071/ https://eprints.nottingham.ac.uk/31071/ |