Bounds on fake weighted projective space

A fake weighted projective space X is a Q-factorial toric variety with Picard number one. As with weighted projective space, X comes equipped with a set of weights (\lambda_0,...,\lambda_n). We see how the singularities of P(\lambda_0,...,\lambda_n) influence the singularities of X, and how the weig...

Full description

Bibliographic Details
Main Author: Kasprzyk, Alexander M.
Format: Article
Published: Tokyo Institute of Technology, Department of Mathematics 2009
Subjects:
Online Access:https://eprints.nottingham.ac.uk/30723/
Description
Summary:A fake weighted projective space X is a Q-factorial toric variety with Picard number one. As with weighted projective space, X comes equipped with a set of weights (\lambda_0,...,\lambda_n). We see how the singularities of P(\lambda_0,...,\lambda_n) influence the singularities of X, and how the weights bound the number of possible fake weighted projective spaces for a fixed dimension. Finally, we present an upper bound on the ratios \lambda_j/\sum\lambda_i if we wish X to have only terminal (or canonical) singularities.