Novel integrated design techniques for biorefineries

Utilisation of biomass is identified as one of the promising solutions to reduce society’s dependence on fossil fuels and mitigate climate change caused by the exploitation of fossil fuels. By using the concept of biorefinery, biomass can be converted into value-added products such as biofuels, bio...

Full description

Bibliographic Details
Main Author: Ng, Lik Yin
Format: Thesis (University of Nottingham only)
Language:English
Published: 2015
Subjects:
Online Access:https://eprints.nottingham.ac.uk/29016/
_version_ 1848793696944783360
author Ng, Lik Yin
author_facet Ng, Lik Yin
author_sort Ng, Lik Yin
building Nottingham Research Data Repository
collection Online Access
description Utilisation of biomass is identified as one of the promising solutions to reduce society’s dependence on fossil fuels and mitigate climate change caused by the exploitation of fossil fuels. By using the concept of biorefinery, biomass can be converted into value-added products such as biofuels, biochemical products and biomaterials in a greener and sustainable way. To enhance the efficiency of biorefinery, the concept of integrated biorefinery which focuses on the integration of various biomass conversion technologies is utilised. To date, various biomass conversion pathways are available to convert biomass into a wide range of products. Due to the substantial amount of potential products and conversion technologies, determining of chemical products and processing routes in an integrated biorefinery have become more challenging. Hence, there is a need for a methodology capable of evaluating the integrated process in order to identify the optimal products as well as the optimal conversion pathways that produce the identified products. This thesis presents a novel approach which integrates process with product design techniques for integrated biorefineries. In the proposed approach, integration between synthesis of integrated biorefinery and computer-aided molecular design (CAMD) techniques is presented. By using CAMD techniques, optimal chemical product in terms of target properties which fulfils the required product needs is designed. On the other hand, in order to identify the conversion pathways that produce the identified optimal chemical product in an integrated biorefinery, chemical reaction pathway map (CRPM) and superstructural mathematical optimisation approach have been utilised. Furthermore, this thesis also presents various chemical product design approaches. In order to solve chemical design problems where multiple product needs are required to be considered and optimised, a novel multi-objective optimisation approach for chemical product design has been presented. By using fuzzy optimisation approach, the developed multi-objective optimisation approach identifies optimal chemical product based on multiple product properties. In addition, fuzzy optimisation approach has been further extended to address chemical product design problems where the accuracy of property prediction model is taken into account. A robust chemical product design approach is developed to design optimal chemical products with consideration of accuracy of property prediction model. Furthermore, together with CAMD techniques and superstructural mathematical optimisation approach, the developed multi-objective optimisation approach has been utilised for the design of mixtures in an integrated biorefinery. For this purpose, a systematic optimisation approach has been developed to identify optimal mixture based on multiple desired product needs as well as the optimal conversion pathways that convert biomass into the optimal mixture. Finally, possible extensions and future opportunities for the realm of the research work have been highlighted in the later part of this thesis.
first_indexed 2025-11-14T19:04:25Z
format Thesis (University of Nottingham only)
id nottingham-29016
institution University of Nottingham Malaysia Campus
institution_category Local University
language English
last_indexed 2025-11-14T19:04:25Z
publishDate 2015
recordtype eprints
repository_type Digital Repository
spelling nottingham-290162025-02-28T11:35:12Z https://eprints.nottingham.ac.uk/29016/ Novel integrated design techniques for biorefineries Ng, Lik Yin Utilisation of biomass is identified as one of the promising solutions to reduce society’s dependence on fossil fuels and mitigate climate change caused by the exploitation of fossil fuels. By using the concept of biorefinery, biomass can be converted into value-added products such as biofuels, biochemical products and biomaterials in a greener and sustainable way. To enhance the efficiency of biorefinery, the concept of integrated biorefinery which focuses on the integration of various biomass conversion technologies is utilised. To date, various biomass conversion pathways are available to convert biomass into a wide range of products. Due to the substantial amount of potential products and conversion technologies, determining of chemical products and processing routes in an integrated biorefinery have become more challenging. Hence, there is a need for a methodology capable of evaluating the integrated process in order to identify the optimal products as well as the optimal conversion pathways that produce the identified products. This thesis presents a novel approach which integrates process with product design techniques for integrated biorefineries. In the proposed approach, integration between synthesis of integrated biorefinery and computer-aided molecular design (CAMD) techniques is presented. By using CAMD techniques, optimal chemical product in terms of target properties which fulfils the required product needs is designed. On the other hand, in order to identify the conversion pathways that produce the identified optimal chemical product in an integrated biorefinery, chemical reaction pathway map (CRPM) and superstructural mathematical optimisation approach have been utilised. Furthermore, this thesis also presents various chemical product design approaches. In order to solve chemical design problems where multiple product needs are required to be considered and optimised, a novel multi-objective optimisation approach for chemical product design has been presented. By using fuzzy optimisation approach, the developed multi-objective optimisation approach identifies optimal chemical product based on multiple product properties. In addition, fuzzy optimisation approach has been further extended to address chemical product design problems where the accuracy of property prediction model is taken into account. A robust chemical product design approach is developed to design optimal chemical products with consideration of accuracy of property prediction model. Furthermore, together with CAMD techniques and superstructural mathematical optimisation approach, the developed multi-objective optimisation approach has been utilised for the design of mixtures in an integrated biorefinery. For this purpose, a systematic optimisation approach has been developed to identify optimal mixture based on multiple desired product needs as well as the optimal conversion pathways that convert biomass into the optimal mixture. Finally, possible extensions and future opportunities for the realm of the research work have been highlighted in the later part of this thesis. 2015-07-25 Thesis (University of Nottingham only) NonPeerReviewed application/pdf en arr https://eprints.nottingham.ac.uk/29016/1/Thesis_Ng%20Lik%20Yin.pdf Ng, Lik Yin (2015) Novel integrated design techniques for biorefineries. PhD thesis, University of Nottingham. computer-aided molecular design integrated biorefinery integrated product and process design inverse design techniques product design
spellingShingle computer-aided molecular design
integrated biorefinery
integrated product and process design
inverse design techniques
product design
Ng, Lik Yin
Novel integrated design techniques for biorefineries
title Novel integrated design techniques for biorefineries
title_full Novel integrated design techniques for biorefineries
title_fullStr Novel integrated design techniques for biorefineries
title_full_unstemmed Novel integrated design techniques for biorefineries
title_short Novel integrated design techniques for biorefineries
title_sort novel integrated design techniques for biorefineries
topic computer-aided molecular design
integrated biorefinery
integrated product and process design
inverse design techniques
product design
url https://eprints.nottingham.ac.uk/29016/