Results in stochastic control: optimal prediction problems and Markov decision processes

The following thesis is divided in two main topics. The first part studies variations of optimal prediction problems introduced in Shiryaev, Zhou and Xu (2008) and Du Toit and Peskir (2009) to a randomized terminal-time set up and different families of utility measures. The work presents optimal sto...

Full description

Bibliographic Details
Main Author: Pérez López, Iker
Format: Thesis (University of Nottingham only)
Language:English
Published: 2015
Subjects:
Online Access:https://eprints.nottingham.ac.uk/28395/
Description
Summary:The following thesis is divided in two main topics. The first part studies variations of optimal prediction problems introduced in Shiryaev, Zhou and Xu (2008) and Du Toit and Peskir (2009) to a randomized terminal-time set up and different families of utility measures. The work presents optimal stopping rules that apply under different criteria, introduces a numerical technique to build approximations of stopping boundaries for fixed terminal time problems and suggest previously reported stopping rules extend to certain generalizations of measures. The second part of the thesis is concerned with analysing optimal wealth allocation techniques within a defaultable financial market similar to Bielecki and Jang (2007). It studies a portfolio optimization problem combining a continuous time jump market and a defaultable security; and presents numerical solutions through the conversion into a Markov Decision Process and characterization of its value function as a unique fixed point to a contracting operator. This work analyses allocation strategies under several families of utilities functions, and highlights significant portfolio selection differences with previously reported results.