Mock period functions, sesquiharmonic Maass forms, and non-critical values of L-functions

We introduce a new technique of completion for 1-cohomology which parallels the corresponding technique in the theory of mock modular forms. This technique is applied in the context of non-critical values of L-functions of GL(2) cusp forms. We prove that a generating series of non-critical values ca...

Full description

Bibliographic Details
Main Authors: Bringmann, Kathrin, Diamantis, Nikolaos, Raum, Martin
Format: Article
Published: Elsevier 2013
Online Access:https://eprints.nottingham.ac.uk/2765/
_version_ 1848790870212476928
author Bringmann, Kathrin
Diamantis, Nikolaos
Raum, Martin
author_facet Bringmann, Kathrin
Diamantis, Nikolaos
Raum, Martin
author_sort Bringmann, Kathrin
building Nottingham Research Data Repository
collection Online Access
description We introduce a new technique of completion for 1-cohomology which parallels the corresponding technique in the theory of mock modular forms. This technique is applied in the context of non-critical values of L-functions of GL(2) cusp forms. We prove that a generating series of non-critical values can be interpreted as a mock period function we define in analogy with period polynomials. Further, we prove that non-critical values can be encoded into a sesquiharmonic Maass form. Finally, we formulate and prove an Eichler-Shimura-type isomorphism for the space of mock period functions.
first_indexed 2025-11-14T18:19:29Z
format Article
id nottingham-2765
institution University of Nottingham Malaysia Campus
institution_category Local University
last_indexed 2025-11-14T18:19:29Z
publishDate 2013
publisher Elsevier
recordtype eprints
repository_type Digital Repository
spelling nottingham-27652020-05-04T20:19:51Z https://eprints.nottingham.ac.uk/2765/ Mock period functions, sesquiharmonic Maass forms, and non-critical values of L-functions Bringmann, Kathrin Diamantis, Nikolaos Raum, Martin We introduce a new technique of completion for 1-cohomology which parallels the corresponding technique in the theory of mock modular forms. This technique is applied in the context of non-critical values of L-functions of GL(2) cusp forms. We prove that a generating series of non-critical values can be interpreted as a mock period function we define in analogy with period polynomials. Further, we prove that non-critical values can be encoded into a sesquiharmonic Maass form. Finally, we formulate and prove an Eichler-Shimura-type isomorphism for the space of mock period functions. Elsevier 2013 Article PeerReviewed Bringmann, Kathrin, Diamantis, Nikolaos and Raum, Martin (2013) Mock period functions, sesquiharmonic Maass forms, and non-critical values of L-functions. Advances in Mathematics, 233 (1). pp. 115-134. ISSN 0001-8708 http://dx.doi.org/10.1016/j.aim.2012.09.025 doi:10.1016/j.aim.2012.09.025 doi:10.1016/j.aim.2012.09.025
spellingShingle Bringmann, Kathrin
Diamantis, Nikolaos
Raum, Martin
Mock period functions, sesquiharmonic Maass forms, and non-critical values of L-functions
title Mock period functions, sesquiharmonic Maass forms, and non-critical values of L-functions
title_full Mock period functions, sesquiharmonic Maass forms, and non-critical values of L-functions
title_fullStr Mock period functions, sesquiharmonic Maass forms, and non-critical values of L-functions
title_full_unstemmed Mock period functions, sesquiharmonic Maass forms, and non-critical values of L-functions
title_short Mock period functions, sesquiharmonic Maass forms, and non-critical values of L-functions
title_sort mock period functions, sesquiharmonic maass forms, and non-critical values of l-functions
url https://eprints.nottingham.ac.uk/2765/
https://eprints.nottingham.ac.uk/2765/
https://eprints.nottingham.ac.uk/2765/