Asynchrony adaptation reveals neural population code for audio-visual timing
The relative timing of auditory and visual stimuli is a critical cue for determining whether sensory signals relate to a common source and for making inferences about causality. However, the way in which the brain represents temporal relationships remains poorly understood. Recent studies indicate t...
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Published: |
Royal Society
2011
|
| Subjects: | |
| Online Access: | https://eprints.nottingham.ac.uk/2623/ |
| _version_ | 1848790832830742528 |
|---|---|
| author | Roach, Neil W. Heron, James Whitaker, David McGraw, Paul V. |
| author_facet | Roach, Neil W. Heron, James Whitaker, David McGraw, Paul V. |
| author_sort | Roach, Neil W. |
| building | Nottingham Research Data Repository |
| collection | Online Access |
| description | The relative timing of auditory and visual stimuli is a critical cue for determining whether sensory signals relate to a common source and for making inferences about causality. However, the way in which the brain represents temporal relationships remains poorly understood. Recent studies indicate that our perception of multisensory timing is flexible—adaptation to a regular inter-modal delay alters the point at which subsequent stimuli are judged to be simultaneous. Here, we measure the effect of audio-visual asynchrony adaptation on the perception of a wide range of sub-second temporal relationships. We find distinctive patterns of induced biases that are inconsistent with the previous explanations based on changes in perceptual latency. Instead, our results can be well accounted for by a neural population coding model in which: (i) relative audio-visual timing is represented by the distributed activity across a relatively small number of neurons tuned to different delays; (ii) the algorithm for reading out this population code is efficient, but subject to biases owing to under-sampling; and (iii) the effect of adaptation is to modify neuronal response gain. These results suggest that multisensory timing information is represented by a dedicated population code and that shifts in perceived simultaneity following asynchrony adaptation arise from analogous neural processes to well-known perceptual after-effects. |
| first_indexed | 2025-11-14T18:18:53Z |
| format | Article |
| id | nottingham-2623 |
| institution | University of Nottingham Malaysia Campus |
| institution_category | Local University |
| last_indexed | 2025-11-14T18:18:53Z |
| publishDate | 2011 |
| publisher | Royal Society |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | nottingham-26232020-05-04T16:30:32Z https://eprints.nottingham.ac.uk/2623/ Asynchrony adaptation reveals neural population code for audio-visual timing Roach, Neil W. Heron, James Whitaker, David McGraw, Paul V. The relative timing of auditory and visual stimuli is a critical cue for determining whether sensory signals relate to a common source and for making inferences about causality. However, the way in which the brain represents temporal relationships remains poorly understood. Recent studies indicate that our perception of multisensory timing is flexible—adaptation to a regular inter-modal delay alters the point at which subsequent stimuli are judged to be simultaneous. Here, we measure the effect of audio-visual asynchrony adaptation on the perception of a wide range of sub-second temporal relationships. We find distinctive patterns of induced biases that are inconsistent with the previous explanations based on changes in perceptual latency. Instead, our results can be well accounted for by a neural population coding model in which: (i) relative audio-visual timing is represented by the distributed activity across a relatively small number of neurons tuned to different delays; (ii) the algorithm for reading out this population code is efficient, but subject to biases owing to under-sampling; and (iii) the effect of adaptation is to modify neuronal response gain. These results suggest that multisensory timing information is represented by a dedicated population code and that shifts in perceived simultaneity following asynchrony adaptation arise from analogous neural processes to well-known perceptual after-effects. Royal Society 2011-05-01 Article PeerReviewed Roach, Neil W., Heron, James, Whitaker, David and McGraw, Paul V. (2011) Asynchrony adaptation reveals neural population code for audio-visual timing. Proceedings of the Royal Society B: Biological Sciences, 278 (1710). pp. 1341-1322. ISSN 1471-2954 auditory-visual timing; multisensory; population coding http://rspb.royalsocietypublishing.org/content/278/1710/1314 doi:10.1098/rspb.2010.1737 doi:10.1098/rspb.2010.1737 |
| spellingShingle | auditory-visual timing; multisensory; population coding Roach, Neil W. Heron, James Whitaker, David McGraw, Paul V. Asynchrony adaptation reveals neural population code for audio-visual timing |
| title | Asynchrony adaptation reveals neural population code for audio-visual timing |
| title_full | Asynchrony adaptation reveals neural population code for audio-visual timing |
| title_fullStr | Asynchrony adaptation reveals neural population code for audio-visual timing |
| title_full_unstemmed | Asynchrony adaptation reveals neural population code for audio-visual timing |
| title_short | Asynchrony adaptation reveals neural population code for audio-visual timing |
| title_sort | asynchrony adaptation reveals neural population code for audio-visual timing |
| topic | auditory-visual timing; multisensory; population coding |
| url | https://eprints.nottingham.ac.uk/2623/ https://eprints.nottingham.ac.uk/2623/ https://eprints.nottingham.ac.uk/2623/ |