Proximity projection grating structured illumination microscopy

Structured illumination has been employed in fluorescence microscopy to extend its lateral resolution. It has been demonstrated that a factor of 2 improvement can be achieved. In this thesis, we introduce a novel optical arrangement, which we call Proximity Projection Grating Structure Illumination...

Full description

Bibliographic Details
Main Author: Chuang, Chin-Jung
Format: Thesis (University of Nottingham only)
Language:English
Published: 2011
Subjects:
Online Access:https://eprints.nottingham.ac.uk/12262/
_version_ 1848791466609999872
author Chuang, Chin-Jung
author_facet Chuang, Chin-Jung
author_sort Chuang, Chin-Jung
building Nottingham Research Data Repository
collection Online Access
description Structured illumination has been employed in fluorescence microscopy to extend its lateral resolution. It has been demonstrated that a factor of 2 improvement can be achieved. In this thesis, we introduce a novel optical arrangement, which we call Proximity Projection Grating Structure Illumination Microscopy (PGSIM). Although the method is based on the original structured illumination, the present technique can further improve the lateral resolution of the microscope. The technique makes use of a fine grating held in close proximity to the sample, with a layer of high refractive index optical thin film sandwiched between the two. The fringe pattern thus projected onto the sample contains grating vectors substantially higher than those that are possible with the original structured illumination setup. The presence of these very high grating orders is the basis for the significant improvement in the system resolution. In this thesis, the principle behind the PGSIM will be explained. The optical system used to demonstrate the technique will be described, with particular attention paid towards the construction and alignment of the unit containing the fine grating. Experimental results will be presented to demonstrate the characteristics of the grating unit and the operation of the system. Further results obtained with the system applied to fine particles will be given, showing the resolution improvement of greater than a factor of 2 compared to a conventional optical microscope. The thesis also contains detailed analysis of the performance of the system. From this analysis, it is concluded that greater resolution improvement can be achieved by using appropriate material for the optical thin film.
first_indexed 2025-11-14T18:28:58Z
format Thesis (University of Nottingham only)
id nottingham-12262
institution University of Nottingham Malaysia Campus
institution_category Local University
language English
last_indexed 2025-11-14T18:28:58Z
publishDate 2011
recordtype eprints
repository_type Digital Repository
spelling nottingham-122622025-02-28T11:18:23Z https://eprints.nottingham.ac.uk/12262/ Proximity projection grating structured illumination microscopy Chuang, Chin-Jung Structured illumination has been employed in fluorescence microscopy to extend its lateral resolution. It has been demonstrated that a factor of 2 improvement can be achieved. In this thesis, we introduce a novel optical arrangement, which we call Proximity Projection Grating Structure Illumination Microscopy (PGSIM). Although the method is based on the original structured illumination, the present technique can further improve the lateral resolution of the microscope. The technique makes use of a fine grating held in close proximity to the sample, with a layer of high refractive index optical thin film sandwiched between the two. The fringe pattern thus projected onto the sample contains grating vectors substantially higher than those that are possible with the original structured illumination setup. The presence of these very high grating orders is the basis for the significant improvement in the system resolution. In this thesis, the principle behind the PGSIM will be explained. The optical system used to demonstrate the technique will be described, with particular attention paid towards the construction and alignment of the unit containing the fine grating. Experimental results will be presented to demonstrate the characteristics of the grating unit and the operation of the system. Further results obtained with the system applied to fine particles will be given, showing the resolution improvement of greater than a factor of 2 compared to a conventional optical microscope. The thesis also contains detailed analysis of the performance of the system. From this analysis, it is concluded that greater resolution improvement can be achieved by using appropriate material for the optical thin film. 2011-11 Thesis (University of Nottingham only) NonPeerReviewed application/pdf en arr https://eprints.nottingham.ac.uk/12262/1/PGSIM_chinjung_chuang.pdf Chuang, Chin-Jung (2011) Proximity projection grating structured illumination microscopy. PhD thesis, University of Nottingham. Diffraction gratings fluorescence microscopy
spellingShingle Diffraction gratings
fluorescence microscopy
Chuang, Chin-Jung
Proximity projection grating structured illumination microscopy
title Proximity projection grating structured illumination microscopy
title_full Proximity projection grating structured illumination microscopy
title_fullStr Proximity projection grating structured illumination microscopy
title_full_unstemmed Proximity projection grating structured illumination microscopy
title_short Proximity projection grating structured illumination microscopy
title_sort proximity projection grating structured illumination microscopy
topic Diffraction gratings
fluorescence microscopy
url https://eprints.nottingham.ac.uk/12262/