Biogeography and phylogenetics of the planktonic foraminifera

The planktonic foraminifera are a highly abundant and diverse group of marine pelagic protists that are ubiquitously distributed throughout the worlds’ oceans. These unicellular eukaryotes are encased in a calcareous (CaCO3) shell or ‘test’, the morphology of which is used to identify individual ‘m...

Full description

Bibliographic Details
Main Author: Seears, Heidi
Format: Thesis (University of Nottingham only)
Language:English
English
English
Published: 2011
Online Access:https://eprints.nottingham.ac.uk/11879/
_version_ 1848791380585873408
author Seears, Heidi
author_facet Seears, Heidi
author_sort Seears, Heidi
building Nottingham Research Data Repository
collection Online Access
description The planktonic foraminifera are a highly abundant and diverse group of marine pelagic protists that are ubiquitously distributed throughout the worlds’ oceans. These unicellular eukaryotes are encased in a calcareous (CaCO3) shell or ‘test’, the morphology of which is used to identify individual ‘morphospecies’. The foraminifera have an exceptional fossil record, spanning over 180 million years, and as microfossils provide a highly successful paleoproxy for dating sedimentary rocks and archiving past climate. Molecular studies, using the small subunit (SSU) ribosomal (r) RNA gene are used here to investigate the biogeographical distributions and phylogenetic relationships of the planktonic foraminifera. Biogeographical surveys of two markedly different areas of the global ocean, the tropical Arabian Sea, and the transitional/sub-polar North Atlantic Ocean, revealed significant genotypic variation within the planktonic foraminifera, with some genetic types being sequenced here for the first time. The foraminiferal genotypes displayed non-random geographical distributions, suggestive of distinct ecologies, giving insight into the possible mechanisms of diversification in these marine organisms. The ecological segregation of genetically divergent but morphologically cryptic genetic types could, however, have serious repercussions on their use as paleoproxies of past climate change. Phylogenetic analyses of the foraminifera based firstly on a partial ~1,000 bp terminal 3´ fragment of the SSU rRNA gene, and secondly on the ~3,000 bp almost complete gene supported the hypothesis of the polyphyletic origins of the planktonic foraminifera, which appear to be derived from up to 5 separate benthic ancestral lineages. The almost complete gene is sequenced here in the planktonic taxa for the first time, though amplification was problematic. In a first step to addressing a pressing need for new genetic markers to support data gained from the SSU rRNA gene, a culture system was established for the benthic foraminifera, in order to provide a reliable source of DNA for EST library construction or full genome sequencing. Finally, to overcome difficulties associated with the PCR amplification of the foraminifera, a new lysis buffer and DNA extraction procedure was developed. A highly successful buffer was created, allowing high quality DNA to be extracted from foraminiferal specimens, whilst leaving the delicate calcitic shell intact for morphological reference.
first_indexed 2025-11-14T18:27:36Z
format Thesis (University of Nottingham only)
id nottingham-11879
institution University of Nottingham Malaysia Campus
institution_category Local University
language English
English
English
last_indexed 2025-11-14T18:27:36Z
publishDate 2011
recordtype eprints
repository_type Digital Repository
spelling nottingham-118792025-02-28T11:16:09Z https://eprints.nottingham.ac.uk/11879/ Biogeography and phylogenetics of the planktonic foraminifera Seears, Heidi The planktonic foraminifera are a highly abundant and diverse group of marine pelagic protists that are ubiquitously distributed throughout the worlds’ oceans. These unicellular eukaryotes are encased in a calcareous (CaCO3) shell or ‘test’, the morphology of which is used to identify individual ‘morphospecies’. The foraminifera have an exceptional fossil record, spanning over 180 million years, and as microfossils provide a highly successful paleoproxy for dating sedimentary rocks and archiving past climate. Molecular studies, using the small subunit (SSU) ribosomal (r) RNA gene are used here to investigate the biogeographical distributions and phylogenetic relationships of the planktonic foraminifera. Biogeographical surveys of two markedly different areas of the global ocean, the tropical Arabian Sea, and the transitional/sub-polar North Atlantic Ocean, revealed significant genotypic variation within the planktonic foraminifera, with some genetic types being sequenced here for the first time. The foraminiferal genotypes displayed non-random geographical distributions, suggestive of distinct ecologies, giving insight into the possible mechanisms of diversification in these marine organisms. The ecological segregation of genetically divergent but morphologically cryptic genetic types could, however, have serious repercussions on their use as paleoproxies of past climate change. Phylogenetic analyses of the foraminifera based firstly on a partial ~1,000 bp terminal 3´ fragment of the SSU rRNA gene, and secondly on the ~3,000 bp almost complete gene supported the hypothesis of the polyphyletic origins of the planktonic foraminifera, which appear to be derived from up to 5 separate benthic ancestral lineages. The almost complete gene is sequenced here in the planktonic taxa for the first time, though amplification was problematic. In a first step to addressing a pressing need for new genetic markers to support data gained from the SSU rRNA gene, a culture system was established for the benthic foraminifera, in order to provide a reliable source of DNA for EST library construction or full genome sequencing. Finally, to overcome difficulties associated with the PCR amplification of the foraminifera, a new lysis buffer and DNA extraction procedure was developed. A highly successful buffer was created, allowing high quality DNA to be extracted from foraminiferal specimens, whilst leaving the delicate calcitic shell intact for morphological reference. 2011-07-15 Thesis (University of Nottingham only) NonPeerReviewed application/pdf en arr https://eprints.nottingham.ac.uk/11879/1/Heidi_Seears_PhD_thesis.pdf application/pdf en arr https://eprints.nottingham.ac.uk/11879/2/Appendix_9.7.1_to_9.7.8.pdf application/pdf en arr https://eprints.nottingham.ac.uk/11879/3/Appendix_9.7.9.pdf Seears, Heidi (2011) Biogeography and phylogenetics of the planktonic foraminifera. PhD thesis, University of Nottingham.
spellingShingle Seears, Heidi
Biogeography and phylogenetics of the planktonic foraminifera
title Biogeography and phylogenetics of the planktonic foraminifera
title_full Biogeography and phylogenetics of the planktonic foraminifera
title_fullStr Biogeography and phylogenetics of the planktonic foraminifera
title_full_unstemmed Biogeography and phylogenetics of the planktonic foraminifera
title_short Biogeography and phylogenetics of the planktonic foraminifera
title_sort biogeography and phylogenetics of the planktonic foraminifera
url https://eprints.nottingham.ac.uk/11879/