Bayesian perspectives on statistical modelling

This thesis explores the representation of probability measures in a coherent Bayesian modelling framework, together with the ensuing characterisation properties of posterior functionals. First, a decision theoretic approach is adopted to provide a unified modelling criterion applicable to assessin...

Full description

Bibliographic Details
Main Author: Polson, Nicholas G.
Format: Thesis (University of Nottingham only)
Language:English
Published: 1988
Subjects:
Online Access:https://eprints.nottingham.ac.uk/11292/
Description
Summary:This thesis explores the representation of probability measures in a coherent Bayesian modelling framework, together with the ensuing characterisation properties of posterior functionals. First, a decision theoretic approach is adopted to provide a unified modelling criterion applicable to assessing prior-likelihood combinations, design matrices, model dimensionality and choice of sample size. The utility structure and associated Bayes risk induces a distance measure, introducing concepts from differential geometry to aid in the interpretation of modelling characteristics. Secondly, analytical and approximate computations for the implementation of the Bayesian paradigm, based on the properties of the class of transformation models, are discussed. Finally, relationships between distance measures (in the form of either a derivative of a Bayes mapping or an induced distance) are explored, with particular reference to the construction of sensitivity measures.