Quantum Liouville Theory in the Background Field Formalism I. Compact Riemann Surfaces

Using Polyakov's functional integral approach and the Liouville action functional defined in [ZT87c] and [TT03a], we formulate quantum Liouville theory on a compact Riemann surface X of genus g > 1. For the partition function (X) and correlation functions with the stress-energy tensor compon...

Full description

Bibliographic Details
Main Authors: Takhtajan, Leon A., Teo, Lee-Peng
Format: Article
Language:English
Published: SPRINGER 2006
Subjects:
Online Access:http://shdl.mmu.edu.my/3255/
http://shdl.mmu.edu.my/3255/1/1294.pdf
_version_ 1848790277229117440
author Takhtajan, Leon A.
Teo, Lee-Peng
author_facet Takhtajan, Leon A.
Teo, Lee-Peng
author_sort Takhtajan, Leon A.
building MMU Institutional Repository
collection Online Access
description Using Polyakov's functional integral approach and the Liouville action functional defined in [ZT87c] and [TT03a], we formulate quantum Liouville theory on a compact Riemann surface X of genus g > 1. For the partition function (X) and correlation functions with the stress-energy tensor components (Pi(=1n)(i) T(zi) Pi(l)(k=1) (T) over bar((w) over bar (k)), we describe Feynman rules in the background field formalism by expanding corresponding functional integrals around a classical solution, the hyperbolic metric on X. Extending analysis in [Tak93, Tak94, Tak96a, Tak96b], we define the regularization scheme for any choice of the global coordinate on X. For the Schottky and quasi-Fuchsian global coordinates, we rigorously prove that one- and two-point correlation functions satisfy conformal Ward identities in all orders of the perturbation theory. Obtained results are interpreted in terms of complex geometry of the projective line bundle E-C = lambda H-c/2 over the moduli space M-g where c is the central charge and lambda (H) is the Hodge line bundle, and provide the Friedan-Shenker [FS87] complex geometry approach to CFT with the first non-trivial example besides rational models.
first_indexed 2025-11-14T18:10:03Z
format Article
id mmu-3255
institution Multimedia University
institution_category Local University
language English
last_indexed 2025-11-14T18:10:03Z
publishDate 2006
publisher SPRINGER
recordtype eprints
repository_type Digital Repository
spelling mmu-32552014-03-03T04:55:15Z http://shdl.mmu.edu.my/3255/ Quantum Liouville Theory in the Background Field Formalism I. Compact Riemann Surfaces Takhtajan, Leon A. Teo, Lee-Peng T Technology (General) QC Physics Using Polyakov's functional integral approach and the Liouville action functional defined in [ZT87c] and [TT03a], we formulate quantum Liouville theory on a compact Riemann surface X of genus g > 1. For the partition function (X) and correlation functions with the stress-energy tensor components (Pi(=1n)(i) T(zi) Pi(l)(k=1) (T) over bar((w) over bar (k)), we describe Feynman rules in the background field formalism by expanding corresponding functional integrals around a classical solution, the hyperbolic metric on X. Extending analysis in [Tak93, Tak94, Tak96a, Tak96b], we define the regularization scheme for any choice of the global coordinate on X. For the Schottky and quasi-Fuchsian global coordinates, we rigorously prove that one- and two-point correlation functions satisfy conformal Ward identities in all orders of the perturbation theory. Obtained results are interpreted in terms of complex geometry of the projective line bundle E-C = lambda H-c/2 over the moduli space M-g where c is the central charge and lambda (H) is the Hodge line bundle, and provide the Friedan-Shenker [FS87] complex geometry approach to CFT with the first non-trivial example besides rational models. SPRINGER 2006-11 Article NonPeerReviewed text en http://shdl.mmu.edu.my/3255/1/1294.pdf Takhtajan, Leon A. and Teo, Lee-Peng (2006) Quantum Liouville Theory in the Background Field Formalism I. Compact Riemann Surfaces. Communications in Mathematical Physics, 268 (1). pp. 135-197. ISSN 0010-3616 http://dx.doi.org/10.1007/s00220-006-0091-4 doi:10.1007/s00220-006-0091-4 doi:10.1007/s00220-006-0091-4
spellingShingle T Technology (General)
QC Physics
Takhtajan, Leon A.
Teo, Lee-Peng
Quantum Liouville Theory in the Background Field Formalism I. Compact Riemann Surfaces
title Quantum Liouville Theory in the Background Field Formalism I. Compact Riemann Surfaces
title_full Quantum Liouville Theory in the Background Field Formalism I. Compact Riemann Surfaces
title_fullStr Quantum Liouville Theory in the Background Field Formalism I. Compact Riemann Surfaces
title_full_unstemmed Quantum Liouville Theory in the Background Field Formalism I. Compact Riemann Surfaces
title_short Quantum Liouville Theory in the Background Field Formalism I. Compact Riemann Surfaces
title_sort quantum liouville theory in the background field formalism i. compact riemann surfaces
topic T Technology (General)
QC Physics
url http://shdl.mmu.edu.my/3255/
http://shdl.mmu.edu.my/3255/
http://shdl.mmu.edu.my/3255/
http://shdl.mmu.edu.my/3255/1/1294.pdf