Heavy-tailed value-at-risk analysis for Malaysian stock exchange

This article investigates the comparison of power-law value-at-risk (VaR) evaluation with quantile and non-linear time-varying volatility approaches. A simple Pareto distribution is proposed to account the heavy-tailed property in the empirical distribution of returns. Alternative VaR measurement su...

Full description

Bibliographic Details
Main Author: CHIN, W
Format: Article
Published: ELSEVIER SCIENCE BV 2008
Subjects:
Online Access:http://shdl.mmu.edu.my/2656/
Description
Summary:This article investigates the comparison of power-law value-at-risk (VaR) evaluation with quantile and non-linear time-varying volatility approaches. A simple Pareto distribution is proposed to account the heavy-tailed property in the empirical distribution of returns. Alternative VaR measurement such as non-parametric quantile estimate is implemented using interpolation method. In addition, we also used the well-known two components ARCH modelling technique under the assumptions of normality and heavy-tailed (student-t distribution) for the innovations. Our results evidenced that the predicted VaR under the Pareto distribution exhibited similar results with the symmetric heavy-tailed long-memory ARCH model. However, it is found that only the Pareto distribution is able to provide a convenient framework for asymmetric properties in both the lower and upper tails. (c) 2008 Elsevier B.V. All rights reserved.