Image signal-to-noise ratio estimation using the autoregressive model
In the last two decades, a variety of techniques for signal-to-noise ratio (SNR) estimation in scanning electron microscope (SEM) images have been proposed. However, these techniques can be divided into two groups: first, SNR estimators of good accuracy, but based on impractical assumptions; second,...
| Main Authors: | , |
|---|---|
| Format: | Article |
| Published: |
2004
|
| Subjects: | |
| Online Access: | http://shdl.mmu.edu.my/2476/ |
| Summary: | In the last two decades, a variety of techniques for signal-to-noise ratio (SNR) estimation in scanning electron microscope (SEM) images have been proposed. However, these techniques can be divided into two groups: first, SNR estimators of good accuracy, but based on impractical assumptions; second, estimators based on realistic assumptions but of poor accuracy. In this paper we propose the implementation of autoregressive (AR)-model interpolation as a solution to the problem. Unlike others, the proposed technique is based on a single SEM image and offers the required accuracy and robustness in estimating SNR values. |
|---|