Image signal-to-noise ratio estimation using the autoregressive model

In the last two decades, a variety of techniques for signal-to-noise ratio (SNR) estimation in scanning electron microscope (SEM) images have been proposed. However, these techniques can be divided into two groups: first, SNR estimators of good accuracy, but based on impractical assumptions; second,...

Full description

Bibliographic Details
Main Authors: Sim, , KS, Kamel,, NS
Format: Article
Published: 2004
Subjects:
Online Access:http://shdl.mmu.edu.my/2476/
Description
Summary:In the last two decades, a variety of techniques for signal-to-noise ratio (SNR) estimation in scanning electron microscope (SEM) images have been proposed. However, these techniques can be divided into two groups: first, SNR estimators of good accuracy, but based on impractical assumptions; second, estimators based on realistic assumptions but of poor accuracy. In this paper we propose the implementation of autoregressive (AR)-model interpolation as a solution to the problem. Unlike others, the proposed technique is based on a single SEM image and offers the required accuracy and robustness in estimating SNR values.