Li2NiTiO4?a new positive electrode for lithium batteries: soft-chemistry synthesis and electrochemical characterization
A new lithium-rich phase-pure nanocrystalline Li2NiTiO4 was synthesized via an improved synthetic protocol adopting a simple soft-chemistry approach using carboxylic acid-nitrate method at temperature < 300 degreesC for the first time. The product was found to crystallize in a cubic rock-salt str...
| Main Author: | PRABAHARAN, S |
|---|---|
| Format: | Article |
| Published: |
2004
|
| Subjects: | |
| Online Access: | http://shdl.mmu.edu.my/2454/ |
Similar Items
New NASICON-type Li2Ni2(MoO4)3 as a positive electrode material for rechargeable lithium batteries
by: PRABAHARAN, S
Published: (2004)
by: PRABAHARAN, S
Published: (2004)
Optimization of synthesis condition and the electrochemical properties of LiVMO6−δ (M=Mo or W) as candidate positive electrode material for lithium batteries
by: Prabaharan, S
Published: (2002)
by: Prabaharan, S
Published: (2002)
Characterization of soft-combustion-derived NASICON-type Li2Co2(MoO4)3 for lithium batteries
by: PRABAHARAN, S
Published: (2004)
by: PRABAHARAN, S
Published: (2004)
Soft-combustion synthesis of a new cathode-active material, LiVWO6, for lithium-ion batteries
by: Prabaharan, S.R.S., et al.
Published: (2001)
by: Prabaharan, S.R.S., et al.
Published: (2001)
Synthesis and redox properties of LixNi2(MoO4)3: a new 3-V class positive electrode material for rechargeable lithium batteries
by: Prabaharan, S.R.S., et al.
Published: (2004)
by: Prabaharan, S.R.S., et al.
Published: (2004)
Li4Ti5O12/Sn composite anodes for lithium-ion batteries: Synthesis and electrochemical performance
by: Cai, R., et al.
Published: (2010)
by: Cai, R., et al.
Published: (2010)
Synthesis and redox behavior of a new polyanion compound, Li2Co2(MoO4)3, as 4 V class positive electrode material for lithium batteries
by: Begam, K. M., et al.
Published: (2004)
by: Begam, K. M., et al.
Published: (2004)
Structural and electrochemical properties of ZnO coated LiNiVO[4] for lithium ion batteries / Rajammal Karuppiah
by: Karuppiah, Rajammal
Published: (2009)
by: Karuppiah, Rajammal
Published: (2009)
An electrochemical-irradiated plasticity model for metallic electrodes in lithium-ion batteries
by: Ma, Z., et al.
Published: (2017)
by: Ma, Z., et al.
Published: (2017)
Synthesis of a Polyanion Cathode Material, Li[sub 2]Co[sub 2](MoO[sub 4])[sub 3], and Its Electrochemical Properties for Lithium Batteries
by: Prabaharan, S. R. S., et al.
Published: (2004)
by: Prabaharan, S. R. S., et al.
Published: (2004)
New Lithiated NASICON-Type Li[sub 2]Ni[sub 2](MoO[sub 4])[sub 3] for Rechargeable Lithium Batteries
by: Begam, K. M., et al.
Published: (2004)
by: Begam, K. M., et al.
Published: (2004)
Double effect of electrochemical reaction and substrateon hardness in electrodes of lithium-ion batteries
by: Wang, Y., et al.
Published: (2016)
by: Wang, Y., et al.
Published: (2016)
A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives
by: Zhao, B., et al.
Published: (2015)
by: Zhao, B., et al.
Published: (2015)
Synthesis And Electrochemical Behavior Of Lifepo4/C With Air-Electrode For Aqueous Lithium Ion Battery
by: Alias, Nurhaswani
Published: (2015)
by: Alias, Nurhaswani
Published: (2015)
Soft-combustion (wet-chemical) synthesis of a new 4-V class cathode-active material, LiVMoO6, for Li-ion batteries
by: Michael, M. S., et al.
Published: (2000)
by: Michael, M. S., et al.
Published: (2000)
Coupled electrochemical-mechanical modeling with strain gradient plasticity for lithium-ion battery electrodes
by: Wang, Y., et al.
Published: (2021)
by: Wang, Y., et al.
Published: (2021)
Recovery of positive electrode active material from spent lithium-ion battery
by: Widijatmoko, Samuel D
Published: (2020)
by: Widijatmoko, Samuel D
Published: (2020)
Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance
by: Liu, H., et al.
Published: (2011)
by: Liu, H., et al.
Published: (2011)
Nanostructured lithium-free oxyanion cathode, Li x Co 2(MoO4)3 [0∈x∈<3] for 3 v class lithium batteries
by: Kasim Rawthar, Mumtaj Begam, et al.
Published: (2008)
by: Kasim Rawthar, Mumtaj Begam, et al.
Published: (2008)
Nitrogen-doped graphene guided formation of monodisperse microspheres of LiFePO4 nanoplates as the positive electrode material of lithium-ion batteries
by: Zhou, Yingke, et al.
Published: (2016)
by: Zhou, Yingke, et al.
Published: (2016)
Charge-discharge characteristics improvement through optimization of voltage range for LiNiCoMnO2 electrode for high energy density lithium-ion batteries
by: Puteh Melor Wesma Salehen,, et al.
Published: (2018)
by: Puteh Melor Wesma Salehen,, et al.
Published: (2018)
Enhanced cycling properties of transition metal molybdates, Li x M2(MoO4)3 {0∈x∈<∈3} [M∈=∈Co,Ni]: A nanocomposite approach for lithium batteries
by: K.M., Begam, et al.
Published: (2007)
by: K.M., Begam, et al.
Published: (2007)
Solid lithium electrolyte-Li4Ti5O12 composites as anodes of lithium-ion batteries showing high-rate performance
by: Sha, Y., et al.
Published: (2013)
by: Sha, Y., et al.
Published: (2013)
Two-Step Fabrication of Li4Ti5O12-Coated Carbon Nanofibers as a Flexible Film Electrode for High-Power Lithium-Ion Batteries
by: Zhang, Z., et al.
Published: (2017)
by: Zhang, Z., et al.
Published: (2017)
Spinel LiMn2O4 cathode and carbonaceous anode material for electrochemical energy storage lithium-ion battery
by: Zahoor, Ahmed
Published: (2021)
by: Zahoor, Ahmed
Published: (2021)
A new NASICON-type polyanion, LixNi2(MoO4)3 as 3-V class positive electrode material for rechargeable lithium batteries
by: BEGAM, K
Published: (2004)
by: BEGAM, K
Published: (2004)
Synthesis of well-crystallized Li4Ti5O12 nanoplates for lithium-ion batteries with outstanding rate capability and cycling stability
by: Sha, Y., et al.
Published: (2013)
by: Sha, Y., et al.
Published: (2013)
One-pot combustion synthesis of Li3VO4-Li4Ti5O12 nanocomposite as anode material of lithium-ion batteries with improved performance
by: Sha, Y., et al.
Published: (2016)
by: Sha, Y., et al.
Published: (2016)
Softening by electrochemical reaction-induced dislocations in lithium-ion batteries
by: Ma, Z., et al.
Published: (2017)
by: Ma, Z., et al.
Published: (2017)
Electrospinning based fabrication and performance improvement of film electrodes for lithium-ion batteries composed of TiO2 hollow fibers
by: Yuan, T., et al.
Published: (2011)
by: Yuan, T., et al.
Published: (2011)
From Paper to Paper-like Hierarchical Anatase TiO2 Film Electrode for High-Performance Lithium-Ion Batteries
by: Zhao, B., et al.
Published: (2012)
by: Zhao, B., et al.
Published: (2012)
Hierarchical carbon-coated acanthosphere-like Li4Ti5O12 microspheres for high-power lithium-ion batteries
by: Sha, Y., et al.
Published: (2016)
by: Sha, Y., et al.
Published: (2016)
Facile synthesis of nanocrystalline TiO2 mesoporous microspheres for lithium-ion batteries
by: Wang, J., et al.
Published: (2011)
by: Wang, J., et al.
Published: (2011)
Ballmilling-assisted synthesis and electrochemical performance of LiFePO4/C for lithium-ion battery adopting citric acid as carbon precursor
by: Zhang, D., et al.
Published: (2009)
by: Zhang, D., et al.
Published: (2009)
New NASICON type oxyanion high capacity anode, Li2Co 2(MoO4)3, for lithium-ion batteries: Preliminary studies
by: Michael , M.S., et al.
Published: (2008)
by: Michael , M.S., et al.
Published: (2008)
Combustion synthesis of high-performance Li4Ti5O12 for secondary Li-ion battery
by: Yuan, T., et al.
Published: (2009)
by: Yuan, T., et al.
Published: (2009)
Highly flexible self-standing film electrode composed of mesoporous rutile TiO2/C nanofibers for lithium-ion batteries
by: Zhao, B., et al.
Published: (2012)
by: Zhao, B., et al.
Published: (2012)
Preparation and re-examination of Li4Ti4.85Al0.15O12 as anode material of lithium-ion battery
by: Cai, R., et al.
Published: (2011)
by: Cai, R., et al.
Published: (2011)
Synthesis and electrochemical properties of ternary Co-, Cu- and Ni- based metal-organic frameworks electrode for battery supercapacitor hybrid application
by: Amir Luqman, Sanusi, et al.
Published: (2020)
by: Amir Luqman, Sanusi, et al.
Published: (2020)
Failure prediction of high-capacity electrode materials in lithium-ion batteries
by: Wang, C., et al.
Published: (2016)
by: Wang, C., et al.
Published: (2016)
Similar Items
-
New NASICON-type Li2Ni2(MoO4)3 as a positive electrode material for rechargeable lithium batteries
by: PRABAHARAN, S
Published: (2004) -
Optimization of synthesis condition and the electrochemical properties of LiVMO6−δ (M=Mo or W) as candidate positive electrode material for lithium batteries
by: Prabaharan, S
Published: (2002) -
Characterization of soft-combustion-derived NASICON-type Li2Co2(MoO4)3 for lithium batteries
by: PRABAHARAN, S
Published: (2004) -
Soft-combustion synthesis of a new cathode-active material, LiVWO6, for lithium-ion batteries
by: Prabaharan, S.R.S., et al.
Published: (2001) -
Synthesis and redox properties of LixNi2(MoO4)3: a new 3-V class positive electrode material for rechargeable lithium batteries
by: Prabaharan, S.R.S., et al.
Published: (2004)