Abrasive wear performance of untreated SCF reinforced polymer composite

This work aims to present a study on abrasive wear behaviour of polymer reinforced with natural fibre. Specifically, untreated sugarcane fibre (SCF) was used in two forms to reinforce polyester (SCRP). Chopped SCFs with different lengths (1, 5, 10mm) randomly dispersed (C-SCRP) and continuously unid...

Full description

Bibliographic Details
Main Author: ELTAYEB, N
Format: Article
Published: ELSEVIER SCIENCE SA 2008
Subjects:
Online Access:http://shdl.mmu.edu.my/2241/
_version_ 1848790002188681216
author ELTAYEB, N
author_facet ELTAYEB, N
author_sort ELTAYEB, N
building MMU Institutional Repository
collection Online Access
description This work aims to present a study on abrasive wear behaviour of polymer reinforced with natural fibre. Specifically, untreated sugarcane fibre (SCF) was used in two forms to reinforce polyester (SCRP). Chopped SCFs with different lengths (1, 5, 10mm) randomly dispersed (C-SCRP) and continuously unidirectional fibres (U-SCRP) with two different orientations were prepared using hand-lay up and closed mould techniques. Despite the good adhesion between fibre and matrix, results of mechanical tests showed poor tensile strength of SCRP composite. This was attributed to the weak site inside the fibre itself which could not bear the stress transfer from matrix via the fibre. Experimental results of abrasive wear tests revealed that wear of SCRP composite was sensitive to variations of load, fibre length and fibre orientation and less sensitive to sliding velocity In C-SCRP composite, the lowest wear resistance was observed for composite with 1 mm fibre length as the fibres had no support and removed easily with minimum resistance to the action of abrasive particles followed by 10 and 5 mm fibre length. Meanwhile, C-SCRP composite with 5 mm fibre length offered the highest resistance to material removal compared to the other fibre length used. In U-SCRP composite, the anti-parallel-orientation (APO) exhibited better wear performance compared to the parallel-orientation (PO) one. The predominant wear mechanisms in the case of C-SCRP composite were plastic deformation, micro-cutting, pitting in the matrix, and fibre removal. In the case of U-SCRP composite in (PO) wear mechanisms were micro-cutting, ploughing, fragmentation of wear debris in the matrix and excessive deterioration of fibre surface followed by delamination, while in (APO) the wear mechanisms were micro-cutting in the resin matrix and tearing the fibre transversely at their ends. (c) 2008 Elsevier B.V. All rights reserved.
first_indexed 2025-11-14T18:05:41Z
format Article
id mmu-2241
institution Multimedia University
institution_category Local University
last_indexed 2025-11-14T18:05:41Z
publishDate 2008
publisher ELSEVIER SCIENCE SA
recordtype eprints
repository_type Digital Repository
spelling mmu-22412011-08-12T04:00:48Z http://shdl.mmu.edu.my/2241/ Abrasive wear performance of untreated SCF reinforced polymer composite ELTAYEB, N Q Science (General) T Technology (General) TA Engineering (General). Civil engineering (General) This work aims to present a study on abrasive wear behaviour of polymer reinforced with natural fibre. Specifically, untreated sugarcane fibre (SCF) was used in two forms to reinforce polyester (SCRP). Chopped SCFs with different lengths (1, 5, 10mm) randomly dispersed (C-SCRP) and continuously unidirectional fibres (U-SCRP) with two different orientations were prepared using hand-lay up and closed mould techniques. Despite the good adhesion between fibre and matrix, results of mechanical tests showed poor tensile strength of SCRP composite. This was attributed to the weak site inside the fibre itself which could not bear the stress transfer from matrix via the fibre. Experimental results of abrasive wear tests revealed that wear of SCRP composite was sensitive to variations of load, fibre length and fibre orientation and less sensitive to sliding velocity In C-SCRP composite, the lowest wear resistance was observed for composite with 1 mm fibre length as the fibres had no support and removed easily with minimum resistance to the action of abrasive particles followed by 10 and 5 mm fibre length. Meanwhile, C-SCRP composite with 5 mm fibre length offered the highest resistance to material removal compared to the other fibre length used. In U-SCRP composite, the anti-parallel-orientation (APO) exhibited better wear performance compared to the parallel-orientation (PO) one. The predominant wear mechanisms in the case of C-SCRP composite were plastic deformation, micro-cutting, pitting in the matrix, and fibre removal. In the case of U-SCRP composite in (PO) wear mechanisms were micro-cutting, ploughing, fragmentation of wear debris in the matrix and excessive deterioration of fibre surface followed by delamination, while in (APO) the wear mechanisms were micro-cutting in the resin matrix and tearing the fibre transversely at their ends. (c) 2008 Elsevier B.V. All rights reserved. ELSEVIER SCIENCE SA 2008-09 Article NonPeerReviewed ELTAYEB, N (2008) Abrasive wear performance of untreated SCF reinforced polymer composite. Journal of Materials Processing Technology, 206 (1-3). pp. 305-314. ISSN 09240136 http://dx.doi.org/10.1016/j.jmatprotec.2007.12.028 doi:10.1016/j.jmatprotec.2007.12.028 doi:10.1016/j.jmatprotec.2007.12.028
spellingShingle Q Science (General)
T Technology (General)
TA Engineering (General). Civil engineering (General)
ELTAYEB, N
Abrasive wear performance of untreated SCF reinforced polymer composite
title Abrasive wear performance of untreated SCF reinforced polymer composite
title_full Abrasive wear performance of untreated SCF reinforced polymer composite
title_fullStr Abrasive wear performance of untreated SCF reinforced polymer composite
title_full_unstemmed Abrasive wear performance of untreated SCF reinforced polymer composite
title_short Abrasive wear performance of untreated SCF reinforced polymer composite
title_sort abrasive wear performance of untreated scf reinforced polymer composite
topic Q Science (General)
T Technology (General)
TA Engineering (General). Civil engineering (General)
url http://shdl.mmu.edu.my/2241/
http://shdl.mmu.edu.my/2241/
http://shdl.mmu.edu.my/2241/