Riemann–Liouville and Weyl fractional oscillator processes

Two types of oscillator processes can be obtained as solutions to fractional Langevin equation based on Riemann-Liouville and Weyl fractional integro-differential operators. The relation between these fractional oscillator processes and the corresponding fractional Brownian motion is considered. Gen...

Full description

Bibliographic Details
Main Authors: Lim, S. C., Eab, Chai Hok
Format: Article
Language:English
Published: Elsevier Science 2006
Subjects:
Online Access:http://shdl.mmu.edu.my/1953/
http://shdl.mmu.edu.my/1953/1/Riemann%E2%80%93Liouville%20and%20Weyl%20fractional%20oscillator%20processes.pdf
_version_ 1848789923669213184
author Lim, S. C.
Eab, Chai Hok
author_facet Lim, S. C.
Eab, Chai Hok
author_sort Lim, S. C.
building MMU Institutional Repository
collection Online Access
description Two types of oscillator processes can be obtained as solutions to fractional Langevin equation based on Riemann-Liouville and Weyl fractional integro-differential operators. The relation between these fractional oscillator processes and the corresponding fractional Brownian motion is considered. Generalization of the Weyl fractional oscillator process to positive temperature can be carried out and its partition function can be calculated using the zeta function regularization method. (c) 2006 Elsevier B.V. All rights reserved.
first_indexed 2025-11-14T18:04:26Z
format Article
id mmu-1953
institution Multimedia University
institution_category Local University
language English
last_indexed 2025-11-14T18:04:26Z
publishDate 2006
publisher Elsevier Science
recordtype eprints
repository_type Digital Repository
spelling mmu-19532014-01-28T03:07:36Z http://shdl.mmu.edu.my/1953/ Riemann–Liouville and Weyl fractional oscillator processes Lim, S. C. Eab, Chai Hok QC Physics Two types of oscillator processes can be obtained as solutions to fractional Langevin equation based on Riemann-Liouville and Weyl fractional integro-differential operators. The relation between these fractional oscillator processes and the corresponding fractional Brownian motion is considered. Generalization of the Weyl fractional oscillator process to positive temperature can be carried out and its partition function can be calculated using the zeta function regularization method. (c) 2006 Elsevier B.V. All rights reserved. Elsevier Science 2006-06 Article NonPeerReviewed text en http://shdl.mmu.edu.my/1953/1/Riemann%E2%80%93Liouville%20and%20Weyl%20fractional%20oscillator%20processes.pdf Lim, S. C. and Eab, Chai Hok (2006) Riemann–Liouville and Weyl fractional oscillator processes. Physics Letters A, 355 (2). p. 87. ISSN 0375-9601 http://dx.doi.org/10.1016/j.physleta.2006.02.014 doi:10.1016/j.physleta.2006.02.014 doi:10.1016/j.physleta.2006.02.014
spellingShingle QC Physics
Lim, S. C.
Eab, Chai Hok
Riemann–Liouville and Weyl fractional oscillator processes
title Riemann–Liouville and Weyl fractional oscillator processes
title_full Riemann–Liouville and Weyl fractional oscillator processes
title_fullStr Riemann–Liouville and Weyl fractional oscillator processes
title_full_unstemmed Riemann–Liouville and Weyl fractional oscillator processes
title_short Riemann–Liouville and Weyl fractional oscillator processes
title_sort riemann–liouville and weyl fractional oscillator processes
topic QC Physics
url http://shdl.mmu.edu.my/1953/
http://shdl.mmu.edu.my/1953/
http://shdl.mmu.edu.my/1953/
http://shdl.mmu.edu.my/1953/1/Riemann%E2%80%93Liouville%20and%20Weyl%20fractional%20oscillator%20processes.pdf