Optimizing Age Estimation in Facial Images with Advanced Multi-Class Classification Techniques

Automatic age and gender prediction from facial images is increasingly crucial for applications in security, marketing, and social media. Existing systems often face challenges related to accuracy, demographic generalization, and bias. This study addresses these issues by developing a deep learni...

Full description

Bibliographic Details
Main Authors: R., Karthickmanoj, S.Aasha, Nandhini, D., Lakshmi, R., Rajasree
Format: Article
Language:English
English
Published: INTI International University 2024
Subjects:
Online Access:http://eprints.intimal.edu.my/1982/
http://eprints.intimal.edu.my/1982/1/521
http://eprints.intimal.edu.my/1982/2/joit2024_08b.pdf
_version_ 1848766888394358784
author R., Karthickmanoj
S.Aasha, Nandhini
D., Lakshmi
R., Rajasree
author_facet R., Karthickmanoj
S.Aasha, Nandhini
D., Lakshmi
R., Rajasree
author_sort R., Karthickmanoj
building INTI Institutional Repository
collection Online Access
description Automatic age and gender prediction from facial images is increasingly crucial for applications in security, marketing, and social media. Existing systems often face challenges related to accuracy, demographic generalization, and bias. This study addresses these issues by developing a deep learning-based system utilizing Convolutional Neural Networks (CNNs) for enhanced classification of age and gender. The key research gaps include limited accuracy, insufficient handling of diverse data, and model bias. The proposed approach encompasses data acquisition, preprocessing, and the design of a CNN architecture within a multi-class classification framework. Various CNN models are evaluated, incorporating transfer learning, hyperparameter optimization, and regularization techniques to improve performance. The system's effectiveness is assessed through metrics such as classification accuracy, precision, recall, and robustness across different demographic groups. Results indicate significant advancements in prediction accuracy and model generalization compared to existing methods. The technology holds practical applications in security, personalized marketing, and social networking. Challenges such as model bias and the need for diverse datasets are addressed, with future research aimed at further refining the model and expanding its applicability. This work highlights the substantial improvements deep learning offers to facial recognition technologies.
first_indexed 2025-11-14T11:58:18Z
format Article
id intimal-1982
institution INTI International University
institution_category Local University
language English
English
last_indexed 2025-11-14T11:58:18Z
publishDate 2024
publisher INTI International University
recordtype eprints
repository_type Digital Repository
spelling intimal-19822025-06-13T03:15:21Z http://eprints.intimal.edu.my/1982/ Optimizing Age Estimation in Facial Images with Advanced Multi-Class Classification Techniques R., Karthickmanoj S.Aasha, Nandhini D., Lakshmi R., Rajasree Q Science (General) QA Mathematics QA75 Electronic computers. Computer science QA76 Computer software Automatic age and gender prediction from facial images is increasingly crucial for applications in security, marketing, and social media. Existing systems often face challenges related to accuracy, demographic generalization, and bias. This study addresses these issues by developing a deep learning-based system utilizing Convolutional Neural Networks (CNNs) for enhanced classification of age and gender. The key research gaps include limited accuracy, insufficient handling of diverse data, and model bias. The proposed approach encompasses data acquisition, preprocessing, and the design of a CNN architecture within a multi-class classification framework. Various CNN models are evaluated, incorporating transfer learning, hyperparameter optimization, and regularization techniques to improve performance. The system's effectiveness is assessed through metrics such as classification accuracy, precision, recall, and robustness across different demographic groups. Results indicate significant advancements in prediction accuracy and model generalization compared to existing methods. The technology holds practical applications in security, personalized marketing, and social networking. Challenges such as model bias and the need for diverse datasets are addressed, with future research aimed at further refining the model and expanding its applicability. This work highlights the substantial improvements deep learning offers to facial recognition technologies. INTI International University 2024-08 Article PeerReviewed text en cc_by_4 http://eprints.intimal.edu.my/1982/1/521 text en cc_by_4 http://eprints.intimal.edu.my/1982/2/joit2024_08b.pdf R., Karthickmanoj and S.Aasha, Nandhini and D., Lakshmi and R., Rajasree (2024) Optimizing Age Estimation in Facial Images with Advanced Multi-Class Classification Techniques. Journal of Innovation and Technology, 2024 (08). pp. 1-7. ISSN 2805-5179 http://ipublishing.intimal.edu.my/joint.html
spellingShingle Q Science (General)
QA Mathematics
QA75 Electronic computers. Computer science
QA76 Computer software
R., Karthickmanoj
S.Aasha, Nandhini
D., Lakshmi
R., Rajasree
Optimizing Age Estimation in Facial Images with Advanced Multi-Class Classification Techniques
title Optimizing Age Estimation in Facial Images with Advanced Multi-Class Classification Techniques
title_full Optimizing Age Estimation in Facial Images with Advanced Multi-Class Classification Techniques
title_fullStr Optimizing Age Estimation in Facial Images with Advanced Multi-Class Classification Techniques
title_full_unstemmed Optimizing Age Estimation in Facial Images with Advanced Multi-Class Classification Techniques
title_short Optimizing Age Estimation in Facial Images with Advanced Multi-Class Classification Techniques
title_sort optimizing age estimation in facial images with advanced multi-class classification techniques
topic Q Science (General)
QA Mathematics
QA75 Electronic computers. Computer science
QA76 Computer software
url http://eprints.intimal.edu.my/1982/
http://eprints.intimal.edu.my/1982/
http://eprints.intimal.edu.my/1982/1/521
http://eprints.intimal.edu.my/1982/2/joit2024_08b.pdf