Brain and artificial intelligence: from the viewpoint of spontaneous and task-evoked brain dynamics

Recently, the field of brain science often yields ‘big’ data and utilizes machine learning, which is central for the present artificial intelligence (AI) field and starts usually from extracting the hidden features. However, the data recorded from the brain are dynamic where the property of the da...

Full description

Bibliographic Details
Main Authors: Sase, Takumi, Hassan, Raini
Format: Article
Language:English
English
Published: American Scientific Publishers 2019
Subjects:
Online Access:http://irep.iium.edu.my/74311/
http://irep.iium.edu.my/74311/1/74311_Brain%20and%20Artificial%20Intelligence_article.pdf
http://irep.iium.edu.my/74311/2/74311_Brain%20and%20Artificial%20Intelligence_scopus.pdf
_version_ 1848787944886763520
author Sase, Takumi
Hassan, Raini
author_facet Sase, Takumi
Hassan, Raini
author_sort Sase, Takumi
building IIUM Repository
collection Online Access
description Recently, the field of brain science often yields ‘big’ data and utilizes machine learning, which is central for the present artificial intelligence (AI) field and starts usually from extracting the hidden features. However, the data recorded from the brain are dynamic where the property of the data changes with time, different from photos that are static over the time. Then, the following question emerges: Are brain’s dynamic data really suitable for the present AI techniques? More specifically, can we extract exact features from brain’s dynamic data and what kind of dynamics makes this feature extraction more reliable? To answer these questions, in this study, we generated two kinds of the brain dynamics computationally, i.e., spontaneous and task-evoked brain dynamics, and both dynamics were applied to a fundamental technique for most feature extraction methods, that is, the principal component analysis (PCA). We suggest that the task-evoked brain dynamics can give rise to a feature space where different features, possibly related to personality traits, are classified more robustly and may lead to a better brain-AI system
first_indexed 2025-11-14T17:32:59Z
format Article
id iium-74311
institution International Islamic University Malaysia
institution_category Local University
language English
English
last_indexed 2025-11-14T17:32:59Z
publishDate 2019
publisher American Scientific Publishers
recordtype eprints
repository_type Digital Repository
spelling iium-743112019-08-25T11:38:16Z http://irep.iium.edu.my/74311/ Brain and artificial intelligence: from the viewpoint of spontaneous and task-evoked brain dynamics Sase, Takumi Hassan, Raini T Technology (General) Recently, the field of brain science often yields ‘big’ data and utilizes machine learning, which is central for the present artificial intelligence (AI) field and starts usually from extracting the hidden features. However, the data recorded from the brain are dynamic where the property of the data changes with time, different from photos that are static over the time. Then, the following question emerges: Are brain’s dynamic data really suitable for the present AI techniques? More specifically, can we extract exact features from brain’s dynamic data and what kind of dynamics makes this feature extraction more reliable? To answer these questions, in this study, we generated two kinds of the brain dynamics computationally, i.e., spontaneous and task-evoked brain dynamics, and both dynamics were applied to a fundamental technique for most feature extraction methods, that is, the principal component analysis (PCA). We suggest that the task-evoked brain dynamics can give rise to a feature space where different features, possibly related to personality traits, are classified more robustly and may lead to a better brain-AI system American Scientific Publishers 2019-03 Article PeerReviewed application/pdf en http://irep.iium.edu.my/74311/1/74311_Brain%20and%20Artificial%20Intelligence_article.pdf application/pdf en http://irep.iium.edu.my/74311/2/74311_Brain%20and%20Artificial%20Intelligence_scopus.pdf Sase, Takumi and Hassan, Raini (2019) Brain and artificial intelligence: from the viewpoint of spontaneous and task-evoked brain dynamics. Journal of Computational and Theoretical Nanoscience, 16 (3). pp. 1081-1092. ISSN 1546-1955 E-ISSN 1546-1963 https://www.ingentaconnect.com/content/asp/jctn/2019/00000016/00000003/art00044 10.1166/jctn.2019.8000
spellingShingle T Technology (General)
Sase, Takumi
Hassan, Raini
Brain and artificial intelligence: from the viewpoint of spontaneous and task-evoked brain dynamics
title Brain and artificial intelligence: from the viewpoint of spontaneous and task-evoked brain dynamics
title_full Brain and artificial intelligence: from the viewpoint of spontaneous and task-evoked brain dynamics
title_fullStr Brain and artificial intelligence: from the viewpoint of spontaneous and task-evoked brain dynamics
title_full_unstemmed Brain and artificial intelligence: from the viewpoint of spontaneous and task-evoked brain dynamics
title_short Brain and artificial intelligence: from the viewpoint of spontaneous and task-evoked brain dynamics
title_sort brain and artificial intelligence: from the viewpoint of spontaneous and task-evoked brain dynamics
topic T Technology (General)
url http://irep.iium.edu.my/74311/
http://irep.iium.edu.my/74311/
http://irep.iium.edu.my/74311/
http://irep.iium.edu.my/74311/1/74311_Brain%20and%20Artificial%20Intelligence_article.pdf
http://irep.iium.edu.my/74311/2/74311_Brain%20and%20Artificial%20Intelligence_scopus.pdf