Speaker identification based on hybrid feature extraction techniques

One of the most exciting areas of signal processing is speech processing; speech contains many features or characteristics that can discriminate the identity of the person. The human voice is considered one of the important biometric characteristics that can be used for person identification. Th...

Full description

Bibliographic Details
Main Authors: Abualadas, Feras E., M.Khedher, Akram M. Zeki, Al-Ani, Muzhir Shaban, Messikh, Az-Eddine
Format: Article
Language:English
English
English
Published: The Science and Information Organization 2019
Subjects:
Online Access:http://irep.iium.edu.my/72390/
http://irep.iium.edu.my/72390/1/72390%20Speaker%20identification%20based%20on%20hybrid%20feature%20extraction%20techniques.pdf
http://irep.iium.edu.my/72390/2/72390%20Speaker%20identification%20based%20on%20hybrid%20feature%20extraction%20techniques%20SCOPUS.pdf
http://irep.iium.edu.my/72390/13/72390_Speaker%20Identification%20based%20on%20Hybrid%20Feature%20Extraction%20Techniques_wos.pdf
_version_ 1848787606383362048
author Abualadas, Feras E.
M.Khedher, Akram M. Zeki
Al-Ani, Muzhir Shaban
Messikh, Az-Eddine
author_facet Abualadas, Feras E.
M.Khedher, Akram M. Zeki
Al-Ani, Muzhir Shaban
Messikh, Az-Eddine
author_sort Abualadas, Feras E.
building IIUM Repository
collection Online Access
description One of the most exciting areas of signal processing is speech processing; speech contains many features or characteristics that can discriminate the identity of the person. The human voice is considered one of the important biometric characteristics that can be used for person identification. This work is concerned with studying the effect of appropriate extracted features from various levels of discrete wavelet transformation (DWT) and the concatenation of two techniques (discrete wavelet and curvelet transform) and study the effect of reducing the number of features by using principal component analysis (PCA) on speaker identification. Backpropagation (BP) neural network was also introduced as a classifier.
first_indexed 2025-11-14T17:27:36Z
format Article
id iium-72390
institution International Islamic University Malaysia
institution_category Local University
language English
English
English
last_indexed 2025-11-14T17:27:36Z
publishDate 2019
publisher The Science and Information Organization
recordtype eprints
repository_type Digital Repository
spelling iium-723902019-08-01T03:21:54Z http://irep.iium.edu.my/72390/ Speaker identification based on hybrid feature extraction techniques Abualadas, Feras E. M.Khedher, Akram M. Zeki Al-Ani, Muzhir Shaban Messikh, Az-Eddine T Technology (General) One of the most exciting areas of signal processing is speech processing; speech contains many features or characteristics that can discriminate the identity of the person. The human voice is considered one of the important biometric characteristics that can be used for person identification. This work is concerned with studying the effect of appropriate extracted features from various levels of discrete wavelet transformation (DWT) and the concatenation of two techniques (discrete wavelet and curvelet transform) and study the effect of reducing the number of features by using principal component analysis (PCA) on speaker identification. Backpropagation (BP) neural network was also introduced as a classifier. The Science and Information Organization 2019 Article PeerReviewed application/pdf en http://irep.iium.edu.my/72390/1/72390%20Speaker%20identification%20based%20on%20hybrid%20feature%20extraction%20techniques.pdf application/pdf en http://irep.iium.edu.my/72390/2/72390%20Speaker%20identification%20based%20on%20hybrid%20feature%20extraction%20techniques%20SCOPUS.pdf application/pdf en http://irep.iium.edu.my/72390/13/72390_Speaker%20Identification%20based%20on%20Hybrid%20Feature%20Extraction%20Techniques_wos.pdf Abualadas, Feras E. and M.Khedher, Akram M. Zeki and Al-Ani, Muzhir Shaban and Messikh, Az-Eddine (2019) Speaker identification based on hybrid feature extraction techniques. International Journal of Advanced Computer Science and Applications, 10 (3). pp. 322-327. ISSN 2158-107X E-ISSN 2156-5570 https://thesai.org/Downloads/Volume10No3/Paper_42-Speaker_Identification_based_on_Hybrid_Feature.pdf 10.14569/IJACSA.2019.0100342
spellingShingle T Technology (General)
Abualadas, Feras E.
M.Khedher, Akram M. Zeki
Al-Ani, Muzhir Shaban
Messikh, Az-Eddine
Speaker identification based on hybrid feature extraction techniques
title Speaker identification based on hybrid feature extraction techniques
title_full Speaker identification based on hybrid feature extraction techniques
title_fullStr Speaker identification based on hybrid feature extraction techniques
title_full_unstemmed Speaker identification based on hybrid feature extraction techniques
title_short Speaker identification based on hybrid feature extraction techniques
title_sort speaker identification based on hybrid feature extraction techniques
topic T Technology (General)
url http://irep.iium.edu.my/72390/
http://irep.iium.edu.my/72390/
http://irep.iium.edu.my/72390/
http://irep.iium.edu.my/72390/1/72390%20Speaker%20identification%20based%20on%20hybrid%20feature%20extraction%20techniques.pdf
http://irep.iium.edu.my/72390/2/72390%20Speaker%20identification%20based%20on%20hybrid%20feature%20extraction%20techniques%20SCOPUS.pdf
http://irep.iium.edu.my/72390/13/72390_Speaker%20Identification%20based%20on%20Hybrid%20Feature%20Extraction%20Techniques_wos.pdf