Cloning and expression of hypothetical protein targets in burkholderia pseudomallei by Transposon-Directed Insertion Site Sequencing (TraDIS) technique

Melioidosis is an infectious disease caused by a bacterium called Burkholderia pseudomallei found in contaminated water and soil. B. pseudomallei is naturally resistant to many commonly used antibiotics and thus current research efforts focus on prevention of disease and finding ways to reduce mo...

Full description

Bibliographic Details
Main Authors: Drahaman, Siti Marhamah, Raih, Mohd Firdaus, Muhamad Bunnori, Noraslinda, Mohamed Rehan, Aisyah
Format: Proceeding Paper
Language:English
Published: Centre og Graduate Studies, Kolej Universiti Islam Selangor (KUIS) 2016
Subjects:
Online Access:http://irep.iium.edu.my/58209/
http://irep.iium.edu.my/58209/1/58209_CLONING%20AND%20EXPRESSION%20OF%20HYPOTHETICAL.pdf
_version_ 1848785070670741504
author Drahaman, Siti Marhamah
Raih, Mohd Firdaus
Muhamad Bunnori, Noraslinda
Mohamed Rehan, Aisyah
author_facet Drahaman, Siti Marhamah
Raih, Mohd Firdaus
Muhamad Bunnori, Noraslinda
Mohamed Rehan, Aisyah
author_sort Drahaman, Siti Marhamah
building IIUM Repository
collection Online Access
description Melioidosis is an infectious disease caused by a bacterium called Burkholderia pseudomallei found in contaminated water and soil. B. pseudomallei is naturally resistant to many commonly used antibiotics and thus current research efforts focus on prevention of disease and finding ways to reduce mortality. Identification of B. pseudomallei essential genes and its products may represent excellent targets for development of novel antimicrobial drugs. In this study, primers were designed for the PCR amplification of five target genes selected based on bioinformatics analysis from transposon-directed insertion site sequencing (TraDIS) library which compiles hypothetical proteins. Successfully amplified target genes were cloned into Gateway™ plasmid before being transformed into E. coli host. Expression trials of the target protein were performed for affinity tag protein purification. The presence of expressed soluble or non-soluble proteins were observed using SDS-PAGE electrophoresis. From this study, five selected target genes were successfully amplified using two-step PCR. One target gene, BPSL 2774 was successfully cloned into Gateway™ pDEST15 (GST-tagged) and purified using glutathione affinity protein purification kit. Mass spectrometry result has confirmed the presence of expressed and partially soluble GST-tagged protein of BPSL 2774. Using BLASTp search to PDB database and I-TASSER structure and function prediction softwares, BPSL 2774 is shown to have conserved domains of Glycosyltransferase GTB type superfamily and predicted to function as a glycosyltransferase. This enzyme is important in cell wall biosynthesis and transfer of sugar. This work provides the foundation for further investigation into the function of hypothetical protein BPSL2774, its possible role as a glycosyltransferase and as a potential virulence factor for B. pseudomallei.
first_indexed 2025-11-14T16:47:18Z
format Proceeding Paper
id iium-58209
institution International Islamic University Malaysia
institution_category Local University
language English
last_indexed 2025-11-14T16:47:18Z
publishDate 2016
publisher Centre og Graduate Studies, Kolej Universiti Islam Selangor (KUIS)
recordtype eprints
repository_type Digital Repository
spelling iium-582092017-09-05T07:58:48Z http://irep.iium.edu.my/58209/ Cloning and expression of hypothetical protein targets in burkholderia pseudomallei by Transposon-Directed Insertion Site Sequencing (TraDIS) technique Drahaman, Siti Marhamah Raih, Mohd Firdaus Muhamad Bunnori, Noraslinda Mohamed Rehan, Aisyah QR Microbiology Melioidosis is an infectious disease caused by a bacterium called Burkholderia pseudomallei found in contaminated water and soil. B. pseudomallei is naturally resistant to many commonly used antibiotics and thus current research efforts focus on prevention of disease and finding ways to reduce mortality. Identification of B. pseudomallei essential genes and its products may represent excellent targets for development of novel antimicrobial drugs. In this study, primers were designed for the PCR amplification of five target genes selected based on bioinformatics analysis from transposon-directed insertion site sequencing (TraDIS) library which compiles hypothetical proteins. Successfully amplified target genes were cloned into Gateway™ plasmid before being transformed into E. coli host. Expression trials of the target protein were performed for affinity tag protein purification. The presence of expressed soluble or non-soluble proteins were observed using SDS-PAGE electrophoresis. From this study, five selected target genes were successfully amplified using two-step PCR. One target gene, BPSL 2774 was successfully cloned into Gateway™ pDEST15 (GST-tagged) and purified using glutathione affinity protein purification kit. Mass spectrometry result has confirmed the presence of expressed and partially soluble GST-tagged protein of BPSL 2774. Using BLASTp search to PDB database and I-TASSER structure and function prediction softwares, BPSL 2774 is shown to have conserved domains of Glycosyltransferase GTB type superfamily and predicted to function as a glycosyltransferase. This enzyme is important in cell wall biosynthesis and transfer of sugar. This work provides the foundation for further investigation into the function of hypothetical protein BPSL2774, its possible role as a glycosyltransferase and as a potential virulence factor for B. pseudomallei. Centre og Graduate Studies, Kolej Universiti Islam Selangor (KUIS) 2016-12-02 Proceeding Paper PeerReviewed application/pdf en http://irep.iium.edu.my/58209/1/58209_CLONING%20AND%20EXPRESSION%20OF%20HYPOTHETICAL.pdf Drahaman, Siti Marhamah and Raih, Mohd Firdaus and Muhamad Bunnori, Noraslinda and Mohamed Rehan, Aisyah (2016) Cloning and expression of hypothetical protein targets in burkholderia pseudomallei by Transposon-Directed Insertion Site Sequencing (TraDIS) technique. In: 3rd International Conference on Postgraduate Research (ICPR2016) – “Connecting Minds To The World”, 1st-2nd Dec. 2016, Bukit Jambul, Penang. http://conference.kuis.edu.my/icpr16/FRONT%20PAGE%20E%20PROS.html
spellingShingle QR Microbiology
Drahaman, Siti Marhamah
Raih, Mohd Firdaus
Muhamad Bunnori, Noraslinda
Mohamed Rehan, Aisyah
Cloning and expression of hypothetical protein targets in burkholderia pseudomallei by Transposon-Directed Insertion Site Sequencing (TraDIS) technique
title Cloning and expression of hypothetical protein targets in burkholderia pseudomallei by Transposon-Directed Insertion Site Sequencing (TraDIS) technique
title_full Cloning and expression of hypothetical protein targets in burkholderia pseudomallei by Transposon-Directed Insertion Site Sequencing (TraDIS) technique
title_fullStr Cloning and expression of hypothetical protein targets in burkholderia pseudomallei by Transposon-Directed Insertion Site Sequencing (TraDIS) technique
title_full_unstemmed Cloning and expression of hypothetical protein targets in burkholderia pseudomallei by Transposon-Directed Insertion Site Sequencing (TraDIS) technique
title_short Cloning and expression of hypothetical protein targets in burkholderia pseudomallei by Transposon-Directed Insertion Site Sequencing (TraDIS) technique
title_sort cloning and expression of hypothetical protein targets in burkholderia pseudomallei by transposon-directed insertion site sequencing (tradis) technique
topic QR Microbiology
url http://irep.iium.edu.my/58209/
http://irep.iium.edu.my/58209/
http://irep.iium.edu.my/58209/1/58209_CLONING%20AND%20EXPRESSION%20OF%20HYPOTHETICAL.pdf