Pressure and its derivative with respect to piston Mach number for an oscillating cone
The aim of present study is to obtain mathematical expressions for surface pressure and its derivative with respect to Piston Mach number for an oscillating cone. The effects of Mach number and it’s geometry on Pressure and its derivative with respect to inertia level and incidence angle, and the re...
| Main Authors: | Shabana, Ayesha, Monis, Renita, Crasta, Asha, Khan, Sher Afghan |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
International Organization of Scientific Research ( IOSR )
2016
|
| Subjects: | |
| Online Access: | http://irep.iium.edu.my/54290/ http://irep.iium.edu.my/54290/1/Ayesha.pdf |
Similar Items
Active control of wall pressure flow field at low supersonic Mach numbers
by: Asad Ullah, Mohammed, et al.
Published: (2016)
by: Asad Ullah, Mohammed, et al.
Published: (2016)
Base pressure behaviour in a suddenly expanded duct at supersonic mach number regimes using Taguchi design of experiments
by: Quadros, Jaimon Dennis, et al.
Published: (2018)
by: Quadros, Jaimon Dennis, et al.
Published: (2018)
Experimental research on wall pressure distribution in C-D nozzle at Mach number 1.1 for area ratio 3.24
by: Khan, Sher Afghan, et al.
Published: (2019)
by: Khan, Sher Afghan, et al.
Published: (2019)
Study of effect of flow parameters on base pressure in a
suddenly expanded duct at supersonic mach number regimes using CFD and design of experiments
by: Quadros, Jaimon Dennis, et al.
Published: (2018)
by: Quadros, Jaimon Dennis, et al.
Published: (2018)
Role of active control in increasing base pressure at Sonic Mach Number
by: G. M, Fharukh Ahmed, et al.
Published: (2019)
by: G. M, Fharukh Ahmed, et al.
Published: (2019)
Combined effect of nozzle pressure ratio and screech prone supersonic mach number in a suddenly expanded flow
by: Bashir, Musavir, et al.
Published: (2015)
by: Bashir, Musavir, et al.
Published: (2015)
Influence of control mechanism on the flow field of duct at Mach 1.2 for area ratio 2.56
by: Khan, Sher Afghan, et al.
Published: (2019)
by: Khan, Sher Afghan, et al.
Published: (2019)
Estimation of stability derivatives of an oscillating hypersonic delta wings with curved leading edges
by: Crasta, Asha, et al.
Published: (2012)
by: Crasta, Asha, et al.
Published: (2012)
Experimental investigations on wall pressure in suddenly enlarged ducts at supersonic Mach number regimes
by: Baig, Maugal Ahmed Ali, et al.
Published: (2012)
by: Baig, Maugal Ahmed Ali, et al.
Published: (2012)
Experimental and numerical studies on flow from axisymmetric nozzle flow with sudden expansion for mach 3.0 using CFD.
by: Quadros, Jaimon Dennis, et al.
Published: (2016)
by: Quadros, Jaimon Dennis, et al.
Published: (2016)
Estimation of stability derivative of an oscillating cone in hypersonic flow
by: Shabana, Ayesha, et al.
Published: (2017)
by: Shabana, Ayesha, et al.
Published: (2017)
Effect of aspect ratio with angle of attack of an oscillating hypersonic delta wing with straight leading edges
by: Crasta, Asha, et al.
Published: (2015)
by: Crasta, Asha, et al.
Published: (2015)
Influence of micro jets on wall pressure for area ratio 3.24
by: Ashfaq, Syed, et al.
Published: (2014)
by: Ashfaq, Syed, et al.
Published: (2014)
Effect of nozzle pressure ratio and control jets location to control base pressure in suddenly expanded flows
by: Pathan, Khizer Ahmed, et al.
Published: (2019)
by: Pathan, Khizer Ahmed, et al.
Published: (2019)
A cost-effective data acquisition instrumentation for
measurement of base pressure and wall pressure in suddenly expanded flow through ducts
by: Sethuraman, Vigneshvaran, et al.
Published: (2019)
by: Sethuraman, Vigneshvaran, et al.
Published: (2019)
An investigation of effect of control jets location and blowing pressure ratio to control base pressure in suddenly expanded flows
by: Pathan, Khizar Ahmed, et al.
Published: (2020)
by: Pathan, Khizar Ahmed, et al.
Published: (2020)
Experimental research of wall pressure distribution and effect of micro jet at Mach 1.5
by: Azami, Muhammad Hanafi, et al.
Published: (2019)
by: Azami, Muhammad Hanafi, et al.
Published: (2019)
Studies on flow from converging nozzle and the effect of nozzle pressure ratio for area ratio of 6.25
by: Ashfaq, Syed, et al.
Published: (2014)
by: Ashfaq, Syed, et al.
Published: (2014)
Influence of expansion level on base pressure and reattachment length
by: Pathan, Khizar Ahmed, et al.
Published: (2019)
by: Pathan, Khizar Ahmed, et al.
Published: (2019)
Base and wall pressure control using cavities and ribs in suddenly expanded flows -an overview
by: Sethuraman, Vigneshvaran, et al.
Published: (2020)
by: Sethuraman, Vigneshvaran, et al.
Published: (2020)
Wall Pressure Measurements Beneath the Supersonic Jets in
an Abruptly Augmented Nozzle
by: Bashir, Musavir, et al.
Published: (2020)
by: Bashir, Musavir, et al.
Published: (2020)
Active control of base pressure in suddenly expanded flow for area ratio 4.84
by: Ali Baig, Maughal Ahmed, et al.
Published: (2012)
by: Ali Baig, Maughal Ahmed, et al.
Published: (2012)
Analysis of parameters affecting thrust and base pressure in
suddenly expanded flow from nozzle
by: Pathan, Khizar Ahmed, et al.
Published: (2019)
by: Pathan, Khizar Ahmed, et al.
Published: (2019)
Estimation of stability derivatives in newtonian limit for oscillating cone
by: Shabana, Aysha, et al.
Published: (2018)
by: Shabana, Aysha, et al.
Published: (2018)
Estımatıon of hypersonıc unsteady and qausı-steady dampıng derıvatıves for a delta wings at large incıdence
by: Renita, sharon Monis, et al.
Published: (2020)
by: Renita, sharon Monis, et al.
Published: (2020)
Stabilty derivatives in the newtonian limit
by: Crasta, Asha, et al.
Published: (2013)
by: Crasta, Asha, et al.
Published: (2013)
Stability derivatives of a delta wing with straight leading edge in the Newtonian limit
by: Crasta, Asha, et al.
Published: (2013)
by: Crasta, Asha, et al.
Published: (2013)
Damping derivative evaluation in pitch for an ogive at high mach numbers
by: Shabana, Aysha, et al.
Published: (2019)
by: Shabana, Aysha, et al.
Published: (2019)
Control of nozzle flow using microjets at supersonic Mach Regime
by: G M, Fharukh, et al.
Published: (2019)
by: G M, Fharukh, et al.
Published: (2019)
Computation of stability derivatives of an oscillating cone for specific heat ratio = 1.66
by: Shabana, Aysha, et al.
Published: (2018)
by: Shabana, Aysha, et al.
Published: (2018)
Numerical investigation of splitter plate effect on the bluff body using finite volume method
by: Afifi, Azmil, et al.
Published: (2020)
by: Afifi, Azmil, et al.
Published: (2020)
Analysis of variation of stiffness derivative with Mach number and angle of attack for a supersonic flow
by: Crasta, Asha, et al.
Published: (2016)
by: Crasta, Asha, et al.
Published: (2016)
Enlarge duct length optimization for suddenly expanded flows
by: Pathan, Khizer Ahmed, et al.
Published: (2020)
by: Pathan, Khizer Ahmed, et al.
Published: (2020)
Experimental research on flow development and control effectiveness in the duct at high speed
by: Khan, Sher Afghan, et al.
Published: (2019)
by: Khan, Sher Afghan, et al.
Published: (2019)
Investigation of base flow for an axisymmetric suddenly
expanded nozzle with micro JET
by: Chaudhary, Zakir Ilahi, et al.
Published: (2018)
by: Chaudhary, Zakir Ilahi, et al.
Published: (2018)
Influence of low length-to-diameter ratio and nozzle pressure ratio in an abruptly expanded flow
by: Khan, Sher Afghan
Published: (2015)
by: Khan, Sher Afghan
Published: (2015)
Effect of semi vertex angle on stability derivatives for an
oscillating cone for constant value of specific
heat ratio
by: Shabana, Aysha, et al.
Published: (2018)
by: Shabana, Aysha, et al.
Published: (2018)
Comparing the effect of different turbulence models on the CFD predictions of NACA0018 airfoil aerodynamics
by: Khan, Sher Afghan, et al.
Published: (2020)
by: Khan, Sher Afghan, et al.
Published: (2020)
Analytical estimation of stability derivatives of wing with curved leading edges at hypersonic mach number
by: Renita, sharon Monis, et al.
Published: (2020)
by: Renita, sharon Monis, et al.
Published: (2020)
Effect of mach number on stiffness and damping derivatives for oscillating hyersonic non-planar wedge
by: Crasta, Asha, et al.
Published: (2014)
by: Crasta, Asha, et al.
Published: (2014)
Similar Items
-
Active control of wall pressure flow field at low supersonic Mach numbers
by: Asad Ullah, Mohammed, et al.
Published: (2016) -
Base pressure behaviour in a suddenly expanded duct at supersonic mach number regimes using Taguchi design of experiments
by: Quadros, Jaimon Dennis, et al.
Published: (2018) -
Experimental research on wall pressure distribution in C-D nozzle at Mach number 1.1 for area ratio 3.24
by: Khan, Sher Afghan, et al.
Published: (2019) -
Study of effect of flow parameters on base pressure in a
suddenly expanded duct at supersonic mach number regimes using CFD and design of experiments
by: Quadros, Jaimon Dennis, et al.
Published: (2018) -
Role of active control in increasing base pressure at Sonic Mach Number
by: G. M, Fharukh Ahmed, et al.
Published: (2019)