Influence of low length-to-diameter ratio and nozzle pressure ratio in an abruptly expanded flow
This paper presents an investigation on the efficiency of micro jets to manage the base pressure in rapidly expanded axi-symmetric duct. Four tiny jets of 1mm orifice diameter located at 90 intervals along a pitch circle diameter of 1.3 times the nozzle outlet diameter in the base region were emplo...
| Main Author: | Khan, Sher Afghan |
|---|---|
| Format: | Proceeding Paper |
| Language: | English |
| Published: |
2015
|
| Subjects: | |
| Online Access: | http://irep.iium.edu.my/46660/ http://irep.iium.edu.my/46660/1/46660.pdf |
Similar Items
Experimental study of suddenly expanded flow from correctly expanded nozzles
by: Khan, Sher Afghan, et al.
Published: (2016)
by: Khan, Sher Afghan, et al.
Published: (2016)
Studies on flow from converging nozzle and the effect of nozzle pressure ratio for area ratio of 6.25
by: Ashfaq, Syed, et al.
Published: (2014)
by: Ashfaq, Syed, et al.
Published: (2014)
Effect of nozzle pressure ratio and control jets location to control base pressure in suddenly expanded flows
by: Pathan, Khizer Ahmed, et al.
Published: (2019)
by: Pathan, Khizer Ahmed, et al.
Published: (2019)
CFD analysis of CD nozzle and effect of nozzle pressure ratio on pressure and velocity for suddenly expanded flows
by: Khan, Sher Afghan, et al.
Published: (2018)
by: Khan, Sher Afghan, et al.
Published: (2018)
Wall Pressure Measurements Beneath the Supersonic Jets in
an Abruptly Augmented Nozzle
by: Bashir, Musavir, et al.
Published: (2020)
by: Bashir, Musavir, et al.
Published: (2020)
Effect of sudden expansion for varied area ratios at subsonic and sonic flow regimes
by: Sethuraman, Vigneshvaran, et al.
Published: (2016)
by: Sethuraman, Vigneshvaran, et al.
Published: (2016)
Investigation of efficacy of low length-to-diameter ratio and nozzle pressure ratio on base pressure in an abruptly expanded flow
by: Ahmed, Fharrukh, et al.
Published: (2018)
by: Ahmed, Fharrukh, et al.
Published: (2018)
Active control of base pressure in suddenly expanded flow for area ratio 4.84
by: Ali Baig, Maughal Ahmed, et al.
Published: (2012)
by: Ali Baig, Maughal Ahmed, et al.
Published: (2012)
An investigation of effect of control jets location and blowing pressure ratio to control base pressure in suddenly expanded flows
by: Pathan, Khizar Ahmed, et al.
Published: (2020)
by: Pathan, Khizar Ahmed, et al.
Published: (2020)
Combined effect of nozzle pressure ratio and screech prone supersonic mach number in a suddenly expanded flow
by: Bashir, Musavir, et al.
Published: (2015)
by: Bashir, Musavir, et al.
Published: (2015)
Analysis of parameters affecting thrust and base pressure in
suddenly expanded flow from nozzle
by: Pathan, Khizar Ahmed, et al.
Published: (2019)
by: Pathan, Khizar Ahmed, et al.
Published: (2019)
Investigation of base flow for an axisymmetric suddenly
expanded nozzle with micro JET
by: Chaudhary, Zakir Ilahi, et al.
Published: (2018)
by: Chaudhary, Zakir Ilahi, et al.
Published: (2018)
Enlarge duct length optimization for suddenly expanded flows
by: Pathan, Khizer Ahmed, et al.
Published: (2020)
by: Pathan, Khizer Ahmed, et al.
Published: (2020)
Experimental research on wall pressure distribution in C-D nozzle at Mach number 1.1 for area ratio 3.24
by: Khan, Sher Afghan, et al.
Published: (2019)
by: Khan, Sher Afghan, et al.
Published: (2019)
Influence of micro jets on wall pressure for area ratio 3.24
by: Ashfaq, Syed, et al.
Published: (2014)
by: Ashfaq, Syed, et al.
Published: (2014)
Nozzle expansion level effect on a suddenly expanded flow
by: Khan, Sher Afghan, et al.
Published: (2006)
by: Khan, Sher Afghan, et al.
Published: (2006)
Experimental and numerical studies on flow from axisymmetric nozzle flow with sudden expansion for Mach 3.0 using CFD
by: Quadros, Jaimon Dennis, et al.
Published: (2016)
by: Quadros, Jaimon Dennis, et al.
Published: (2016)
Effect of level of expansion and inertia level in a suddenly expanded flow
by: Chaudhary, Zakir Ilahi, et al.
Published: (2015)
by: Chaudhary, Zakir Ilahi, et al.
Published: (2015)
Base and wall pressure control using cavities and ribs in suddenly expanded flows -an overview
by: Sethuraman, Vigneshvaran, et al.
Published: (2020)
by: Sethuraman, Vigneshvaran, et al.
Published: (2020)
A cost-effective data acquisition instrumentation for
measurement of base pressure and wall pressure in suddenly expanded flow through ducts
by: Sethuraman, Vigneshvaran, et al.
Published: (2019)
by: Sethuraman, Vigneshvaran, et al.
Published: (2019)
Influence of expansion level on base pressure and reattachment length
by: Pathan, Khizar Ahmed, et al.
Published: (2019)
by: Pathan, Khizar Ahmed, et al.
Published: (2019)
Influence of control mechanism on the flow field of duct at Mach 1.2 for area ratio 2.56
by: Khan, Sher Afghan, et al.
Published: (2019)
by: Khan, Sher Afghan, et al.
Published: (2019)
Studies on wall pressure of sonic flow through the converging nozzles for different area ratios
by: Ashfaq, Syed, et al.
Published: (2014)
by: Ashfaq, Syed, et al.
Published: (2014)
Study of effect of flow parameters on base pressure in a
suddenly expanded duct at supersonic mach number regimes using CFD and design of experiments
by: Quadros, Jaimon Dennis, et al.
Published: (2018)
by: Quadros, Jaimon Dennis, et al.
Published: (2018)
Active control of wall pressure flow field at low supersonic Mach numbers
by: Asad Ullah, Mohammed, et al.
Published: (2016)
by: Asad Ullah, Mohammed, et al.
Published: (2016)
Experimental and numerical studies on flow from axisymmetric nozzle flow with sudden expansion for mach 3.0 using CFD.
by: Quadros, Jaimon Dennis, et al.
Published: (2016)
by: Quadros, Jaimon Dennis, et al.
Published: (2016)
Control of suddenly expanded flow
by: Khan, Sher Afghan, et al.
Published: (2006)
by: Khan, Sher Afghan, et al.
Published: (2006)
Base pressure behaviour in a suddenly expanded duct at supersonic mach number regimes using Taguchi design of experiments
by: Quadros, Jaimon Dennis, et al.
Published: (2018)
by: Quadros, Jaimon Dennis, et al.
Published: (2018)
Control of nozzle flow using microjets at supersonic Mach Regime
by: G M, Fharukh, et al.
Published: (2019)
by: G M, Fharukh, et al.
Published: (2019)
Wall pressure studies in a suddenly expanded flow for area ratio 2.56”
by: Baig, Maugal Ahmed Ali, et al.
Published: (2012)
by: Baig, Maugal Ahmed Ali, et al.
Published: (2012)
Pressure and its derivative with respect to piston Mach number for an oscillating cone
by: Shabana, Ayesha, et al.
Published: (2016)
by: Shabana, Ayesha, et al.
Published: (2016)
Combined effect of relief and level of expansion in a suddenly expanded flow
by: Syed, Syed Ashfaq, et al.
Published: (2015)
by: Syed, Syed Ashfaq, et al.
Published: (2015)
Experimental research on flow development and control effectiveness in the duct at high speed
by: Khan, Sher Afghan, et al.
Published: (2019)
by: Khan, Sher Afghan, et al.
Published: (2019)
Assessment of different turbulence models in simulating
axisymmetric flow in suddenly expanded nozzles
by: Khan, Sher Afghan, et al.
Published: (2018)
by: Khan, Sher Afghan, et al.
Published: (2018)
Effect of area ratio on base pressure and control effectiveness
by: G. M., Fharukh Ahmed, et al.
Published: (2019)
by: G. M., Fharukh Ahmed, et al.
Published: (2019)
The effect of micro jets on wall pressure for sonic under expanded flow
by: Ashfaq, Syed, et al.
Published: (2014)
by: Ashfaq, Syed, et al.
Published: (2014)
Numerical investigation of mathematical non-dimensional
constant representing smoothness in the Nusselt profile
by: Ansari, Emad, et al.
Published: (2020)
by: Ansari, Emad, et al.
Published: (2020)
Control of base pressure with micro jets:part-I
by: Rehman, Shafiqur, et al.
Published: (2008)
by: Rehman, Shafiqur, et al.
Published: (2008)
CFD analysis of convergent-divergent nozzle flow and base pressure control using micro-JETS
by: Khan, Ambareen, et al.
Published: (2018)
by: Khan, Ambareen, et al.
Published: (2018)
Numerical investigation of splitter plate effect on the bluff body using finite volume method
by: Afifi, Azmil, et al.
Published: (2020)
by: Afifi, Azmil, et al.
Published: (2020)
Similar Items
-
Experimental study of suddenly expanded flow from correctly expanded nozzles
by: Khan, Sher Afghan, et al.
Published: (2016) -
Studies on flow from converging nozzle and the effect of nozzle pressure ratio for area ratio of 6.25
by: Ashfaq, Syed, et al.
Published: (2014) -
Effect of nozzle pressure ratio and control jets location to control base pressure in suddenly expanded flows
by: Pathan, Khizer Ahmed, et al.
Published: (2019) -
CFD analysis of CD nozzle and effect of nozzle pressure ratio on pressure and velocity for suddenly expanded flows
by: Khan, Sher Afghan, et al.
Published: (2018) -
Wall Pressure Measurements Beneath the Supersonic Jets in
an Abruptly Augmented Nozzle
by: Bashir, Musavir, et al.
Published: (2020)