The use of fibrin and poly(lactic-co-glycolic acid) hybrid scaffold for articular cartilage tissue engineering: an in vivo analysis
Our preliminary results indicated that fibrin and poly(lactic co-glycolic acid) (PLGA) hybrid scaffold promoted early chondrogenesis of articular cartilage constructs in vitro. The aim of this study was to evaluate in vivo cartilaginous tissue formation by chondrocyte-seeded fibrin/PLGA hybrid scaff...
| Main Authors: | Sha'ban, Munirah, Kim, Soon Hee, Idrus, Ruszymah, Khang, Gilson |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
AO Research Institute Davos
2008
|
| Subjects: | |
| Online Access: | http://irep.iium.edu.my/41404/ http://irep.iium.edu.my/41404/1/v015a04.pdf |
Similar Items
Fibrin and poly(lactic-co-glycolic acid) hybrid scaffold promotes early chondrogenesis of articular chondrocytes: an in vitro study
by: Sha'ban, Munirah, et al.
Published: (2008)
by: Sha'ban, Munirah, et al.
Published: (2008)
The use of poly(lactic-co-glycolic acid) and fibrin scaffolds for articular cartilage tissue engineering
by: Abdul Rahman, Rozlin, et al.
Published: (2014)
by: Abdul Rahman, Rozlin, et al.
Published: (2014)
Comparison of biocompatibility and biodegradability of poly(lactic-co-glycolic acid) (PLGA) combined with autologous fibrin versus PLGA for intra-articular screw fixation; an in- vivo study with New Zealand white rabbits- the microradiograph outcome
by: Balakrishnan, Theenesh, et al.
Published: (2017)
by: Balakrishnan, Theenesh, et al.
Published: (2017)
The potential of 3-dimensional construct engineered from poly(lactic-co-glycolic acid)/fibrin hybrid scaffold seeded with bonemarrow mesenchymal stem cells for in vitro cartilage tissue engineering
by: Abdul Rahman, Rozlin, et al.
Published: (2015)
by: Abdul Rahman, Rozlin, et al.
Published: (2015)
Comparison of biocompatibility and biodegradability of Poly(Lactic-Co-Glycolic acid) (PLGA) combined with autologous fibrin versus PLGA for intra-articular screw fixation; an in-vivo study with New Zealand white rabbits–The microradiograph, histology and histomorphometry outcomes
by: Balakrishnan, Theenesh, et al.
Published: (2017)
by: Balakrishnan, Theenesh, et al.
Published: (2017)
The in-vivo study comparison of biocompatibility and biodegradability of poly lactic-co-glycolic acid (PLGA) combined with autologous fibrin versus PLGA for intra-articular screw fixation in New Zealand white rabbits model - The micro-CT scan evaluation
by: Balakrishnan, Theenesh, et al.
Published: (2017)
by: Balakrishnan, Theenesh, et al.
Published: (2017)
Fibrin promotes proliferation and matrix production of
intervertebral disc cells cultured in three-dimensional
poly(lactic-co-glycolic acid) scaffold
by: Sha'ban, Munirah, et al.
Published: (2008)
by: Sha'ban, Munirah, et al.
Published: (2008)
Synthetic/natural hybrid scaffolds for cartilage and disc regeneration
by: Khang, Gilson, et al.
Published: (2008)
by: Khang, Gilson, et al.
Published: (2008)
The in vivo study comparing biocompatibility and biodegradability of poly lactic-co-glycolic acid (plga) combined with autologous fibrin versus plga for intra articular screw fixation in New Zealand white rabbit model-the micro-ct scan evaluation
by: Balakrishnan, Theenesh, et al.
Published: (2017)
by: Balakrishnan, Theenesh, et al.
Published: (2017)
Centrifugation facilitates incorporation of fibrin in poly(lactic-co-glycolic acid) scaffold
by: Mohamad, Mohd Yusof, et al.
Published: (2014)
by: Mohamad, Mohd Yusof, et al.
Published: (2014)
Articular cartilage restoration in load-bearing osteochondral defects by implantation of autologous chondrocyte-fibrin constructs: an experimental study in sheep
by: Sha'ban, Munirah, et al.
Published: (2007)
by: Sha'ban, Munirah, et al.
Published: (2007)
Articular cartilage tissue engineering using poly(lactic-co-glycolic acid) based scaffolds seeded with bone marrow mesenchymal stem cells: from in vitro to in vivo model
by: Abdul Rahman, Rozlin, et al.
Published: (2016)
by: Abdul Rahman, Rozlin, et al.
Published: (2016)
3-Dimensional Poly(Lactic-co-Glycolic Acid) (PLGA), Fibrin and Atelocollagen Bioscaffold for Intervertebral Disc (IVD) Tissue Engineering
by: Sha'ban, Munirah
Published: (2016)
by: Sha'ban, Munirah
Published: (2016)
Swelling capacity and degradation behaviour of poly(lactic-co-glycolic acid) tissue engineering scaffold through atelocollagen, fibrin or, combination of atelocollagen and fibrin addition
by: Mohamad, Mohd Yusof, et al.
Published: (2016)
by: Mohamad, Mohd Yusof, et al.
Published: (2016)
Formation of human articular cartilage from in vitro to in vivo short-term ectopic implantation model: Gross observation, histology and immunohistochemistry analysis
by: Sha'ban, Munirah, et al.
Published: (2016)
by: Sha'ban, Munirah, et al.
Published: (2016)
The effectiveness of tissue engineering approaches in articular cartilage restoration
by: Abdul Rahman, Rozlin, et al.
Published: (2012)
by: Abdul Rahman, Rozlin, et al.
Published: (2012)
Articular cartilage restoration using principles of tissue engineering
by: Abdul Rahman, Rozlin, et al.
Published: (2013)
by: Abdul Rahman, Rozlin, et al.
Published: (2013)
Tissue engineered cartilage with different human chondrocyte sources: articular, auricular and nasal septum
by: Idrus, Ruszymah, et al.
Published: (2005)
by: Idrus, Ruszymah, et al.
Published: (2005)
The potential of 3-dimensional construct engineered from poly(lactic-co-glycolic acid)/fibrin hybrid scaffold seeded with bone marrow mesenchymal stem cells for in vitro cartilage tissue engineering
by: Abdul Rahman, Rozlin, et al.
Published: (2015)
by: Abdul Rahman, Rozlin, et al.
Published: (2015)
Poly(lactic-co-glycolic acid), atelocollagen and fibrin hybrid scaffold seeded with annulus fibrosus cells enhances the formation of cartilaginous tissue engineered construct in vitro
by: Mohamed Amin, Muhammad Azri Ifwat, et al.
Published: (2016)
by: Mohamed Amin, Muhammad Azri Ifwat, et al.
Published: (2016)
The re-expression of Collagen Type II, Aggrecan and
Sox 9 in Tissue-Engineered Human Articular Cartilage
by: Sha'ban, Munirah, et al.
Published: (2005)
by: Sha'ban, Munirah, et al.
Published: (2005)
Expansion of human articular chondrocytes and formation of tissue-engineered cartilage: A step towards exploring a potential use of matrix-induced cell therapy
by: Sha'ban, Munirah, et al.
Published: (2010)
by: Sha'ban, Munirah, et al.
Published: (2010)
In vivo evaluation of 3-dimensional PLGA/ Atelocollagen/ Fibrin scaffolds for intervertebral disc (IVD) regeneration
by: Mohamad, Mohd Yusof, et al.
Published: (2016)
by: Mohamad, Mohd Yusof, et al.
Published: (2016)
Scaffolds for cartilage regeneration: to use or not to use?
by: Sha'ban, Munirah, et al.
Published: (2020)
by: Sha'ban, Munirah, et al.
Published: (2020)
Bioartificial Articular Cartilage Substitute (BACS): advancing functional tissue engineered medical product
by: Abdul Rahman, Rozlin, et al.
Published: (2018)
by: Abdul Rahman, Rozlin, et al.
Published: (2018)
The application of gene transfer technology in articular cartilage tissue engineering: An insight
by: Ahmad Radzi, Muhammad Aa'zamuddin, et al.
Published: (2017)
by: Ahmad Radzi, Muhammad Aa'zamuddin, et al.
Published: (2017)
In vitro evaluation of poly (lactic acid-co-glycolic acid)/
atelocollagen/fibrin bioscaffold for annulus fibrosus regeneration
by: Mohamad, Mohd Yusof, et al.
Published: (2020)
by: Mohamad, Mohd Yusof, et al.
Published: (2020)
Tissue engineering of articular cartilage: from bench to bed-side
by: Abdul Rahman, Rozlin, et al.
Published: (2014)
by: Abdul Rahman, Rozlin, et al.
Published: (2014)
Tissue-engineered human articular cartilage demonstrates intense immunopositivity for collagen type II
by: Sha'ban, Munirah, et al.
Published: (2006)
by: Sha'ban, Munirah, et al.
Published: (2006)
Characterization of 3d (65:35) poly(lactic-co-glycolic acid) incorporated with fibrin and atelocollagen scaffolds using scanning electron microscopy, porosity and swelling tests
by: Mohamed Amin, Muhammad Azri Ifwat, et al.
Published: (2018)
by: Mohamed Amin, Muhammad Azri Ifwat, et al.
Published: (2018)
Cartilage cell and tissue based therapy for focal defect and traumatic osteoarthritis of the articular cartilage in the knee joint
by: BHI, Ruzymah, et al.
Published: (2009)
by: BHI, Ruzymah, et al.
Published: (2009)
Collagen I and collagen II immunohistochemistry analyses on in vitro 3D poly(lactic-co-glycolic acid) seeded with intervertebral disc cells with and without fibrin scaffold
by: Mohamed Amin, Muhammad Azri Ifwat, et al.
Published: (2016)
by: Mohamed Amin, Muhammad Azri Ifwat, et al.
Published: (2016)
Tissue and cell donation for articular cartilage tissue engineering experimentation from Islamic perspective
by: Hashi, Abdurezak Abdulahi, et al.
Published: (2018)
by: Hashi, Abdurezak Abdulahi, et al.
Published: (2018)
Bioartificial articular cartilage substitute: towards the development of functional tissue engineered medical product
by: Sha'ban, Munirah, et al.
Published: (2015)
by: Sha'ban, Munirah, et al.
Published: (2015)
Chondrocytes-induced SOX5/6/9 and TERT genes for articular cartilage tissue engineering: hype or hope?
by: Md Ali @ Tahir, Aisyah Hanani, et al.
Published: (2017)
by: Md Ali @ Tahir, Aisyah Hanani, et al.
Published: (2017)
Current trends in gene-enhanced tissue engineering for articular cartilage regeneration in animal model
by: Mohamed Amin, Muhammad Azri Ifwat, et al.
Published: (2017)
by: Mohamed Amin, Muhammad Azri Ifwat, et al.
Published: (2017)
Electrospun fish skin gelatin scaffolds for functional tissue engineering of articular cartilage
by: Khoo, Weily
Published: (2021)
by: Khoo, Weily
Published: (2021)
The effectiveness of tissue engineering approaches : a review on articular cartilage restoration
by: Abdul Rahman, Rozlin, et al.
Published: (2011)
by: Abdul Rahman, Rozlin, et al.
Published: (2011)
Osteochondral defect repair via autologous implantation of three dimensional construct engineered from poly(lactic-co-glycolic acid)/ fibrin hybrid scaffold seeded with bone marrow mesenchymal stem cells
by: Abdul Rahman, Rozlin, et al.
Published: (2016)
by: Abdul Rahman, Rozlin, et al.
Published: (2016)
Bioartificial Articular Cartilage Substitute (BACS): today’s innovation for active tomorrows
by: Abdul Rahman, Rozlin, et al.
Published: (2016)
by: Abdul Rahman, Rozlin, et al.
Published: (2016)
Similar Items
-
Fibrin and poly(lactic-co-glycolic acid) hybrid scaffold promotes early chondrogenesis of articular chondrocytes: an in vitro study
by: Sha'ban, Munirah, et al.
Published: (2008) -
The use of poly(lactic-co-glycolic acid) and fibrin scaffolds for articular cartilage tissue engineering
by: Abdul Rahman, Rozlin, et al.
Published: (2014) -
Comparison of biocompatibility and biodegradability of poly(lactic-co-glycolic acid) (PLGA) combined with autologous fibrin versus PLGA for intra-articular screw fixation; an in- vivo study with New Zealand white rabbits- the microradiograph outcome
by: Balakrishnan, Theenesh, et al.
Published: (2017) -
The potential of 3-dimensional construct engineered from poly(lactic-co-glycolic acid)/fibrin hybrid scaffold seeded with bonemarrow mesenchymal stem cells for in vitro cartilage tissue engineering
by: Abdul Rahman, Rozlin, et al.
Published: (2015) -
Comparison of biocompatibility and biodegradability of Poly(Lactic-Co-Glycolic acid) (PLGA) combined with autologous fibrin versus PLGA for intra-articular screw fixation; an in-vivo study with New Zealand white rabbits–The microradiograph, histology and histomorphometry outcomes
by: Balakrishnan, Theenesh, et al.
Published: (2017)