Core–shell SiCw@TiC composite whisker-reinforced Al2O3 ceramics: Preparation, properties, and toughening mechanisms
In this study, we propose a novel approach to increase the fracture toughness of Al2O3 ceramics by incorporating core–shell structural composite whiskers as secondary phases. In particular, Al2O3 composite ceramics reinforced with TiC-coated SiC whiskers (SiCw@TiC) were successfully fabricated throu...
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Journal Article |
| Language: | English |
| Published: |
Sciopen
2025
|
| Subjects: | |
| Online Access: | https://www.sciopen.com/article/10.26599/JAC.2025.9221093 http://hdl.handle.net/20.500.11937/98024 |
| Summary: | In this study, we propose a novel approach to increase the fracture toughness of Al2O3 ceramics by incorporating core–shell structural composite whiskers as secondary phases. In particular, Al2O3 composite ceramics reinforced with TiC-coated SiC whiskers (SiCw@TiC) were successfully fabricated through a combination of molten salt synthesis and spark plasma sintering (SPS). The SiCw@TiC whiskers feature a SiCw core and a TiC shell layer (~85 nm thick) composed of nano-sized TiC grains. Remarkably, the core–shell structure is preserved within the Al2O3 matrix after sintering, forming a unique composite toughening phase. The interfacial regions surrounding the whiskers exhibit a complex geometric configuration and multi-dimensional heterogeneities, including variations in phase composition (Al2O3/SiC/TiC), grain size (micron-/nano-scale), and thermal expansion coefficient (3.8×10−6–7.4×10−6/K), which collectively generate a sophisticated stress field. This intricate microstructure enables the SiCw@TiC whiskers to dissipate crack propagation energy through multiple mechanisms, significantly improving the fracture toughness of the Al2O3 matrix. The resulting Al2O3–SiCw@TiC composite ceramics demonstrate exceptional mechanical properties, with a relative density of 99.16%±0.48%, Vickers hardness of 21.38±0.93 GPa, flexural strength of 693±49 MPa, and fracture toughness of 7.15±0.47 MPa·m1/2. This work establishes a paradigm for structural ceramic toughening through engineered core–shell architectures. |
|---|