Geospatial big data: theory, methods, and applications

Bibliographic Details
Main Authors: Zou, L., Song, Yongze, Cervone, G.
Format: Journal Article
Published: 2024
Online Access:http://hdl.handle.net/20.500.11937/97965
_version_ 1848766345074704384
author Zou, L.
Song, Yongze
Cervone, G.
author_facet Zou, L.
Song, Yongze
Cervone, G.
author_sort Zou, L.
building Curtin Institutional Repository
collection Online Access
first_indexed 2025-11-14T11:49:40Z
format Journal Article
id curtin-20.500.11937-97965
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T11:49:40Z
publishDate 2024
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-979652025-07-22T06:01:18Z Geospatial big data: theory, methods, and applications Zou, L. Song, Yongze Cervone, G. 2024 Journal Article http://hdl.handle.net/20.500.11937/97965 10.1080/19475683.2024.2419749 fulltext
spellingShingle Zou, L.
Song, Yongze
Cervone, G.
Geospatial big data: theory, methods, and applications
title Geospatial big data: theory, methods, and applications
title_full Geospatial big data: theory, methods, and applications
title_fullStr Geospatial big data: theory, methods, and applications
title_full_unstemmed Geospatial big data: theory, methods, and applications
title_short Geospatial big data: theory, methods, and applications
title_sort geospatial big data: theory, methods, and applications
url http://hdl.handle.net/20.500.11937/97965