Unveiling promotion effects of Ce doping in La<inf>0.6</inf>Ca<inf>0.4</inf>Co<inf>0.2</inf>Fe<inf>0.8</inf>O<inf>3-δ</inf> as an efficient cathode for solid oxide fuel cells

Perovskite La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) is to date the most intensively studied high-performance cathode material for solid oxide fuel cells (SOFCs), but strontium segregation at elevated temperatures critically impairs the activity and longevity of LSCF cathode. By substituting Sr with Ca, i.e....

Full description

Bibliographic Details
Main Authors: He, S., Li, Z., Hu, X., Li, Q., Song, X., Wang, Y., Zhang, X., Zhong, H., Tian, Y., Jiang, San Ping
Format: Journal Article
Published: 2025
Online Access:http://hdl.handle.net/20.500.11937/97477
_version_ 1848766277732007936
author He, S.
Li, Z.
Hu, X.
Li, Q.
Song, X.
Wang, Y.
Zhang, X.
Zhong, H.
Tian, Y.
Jiang, San Ping
author_facet He, S.
Li, Z.
Hu, X.
Li, Q.
Song, X.
Wang, Y.
Zhang, X.
Zhong, H.
Tian, Y.
Jiang, San Ping
author_sort He, S.
building Curtin Institutional Repository
collection Online Access
description Perovskite La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) is to date the most intensively studied high-performance cathode material for solid oxide fuel cells (SOFCs), but strontium segregation at elevated temperatures critically impairs the activity and longevity of LSCF cathode. By substituting Sr with Ca, i.e. La0.6Ca0.4Co0.2Fe0.8O3-δ (LCCF), the stability of the perovskite can be reinforced, however, at the cost of reduced catalytic activity. Herein, we adopt an effective A-site Ce doping strategy to modify the structure and chemistry of LCCF and therefore to boost its electrochemical performance, i.e. La0.6Ca0.4-xCexCo0.2Fe0.8O3-δ (Ce-LCCFx, x = 0.05–0.2). The results reveal that replacing Ca2+ with Ce4+ notably alters the oxygen vacancies concentration, Fe4+/Fe3+ and Co4+/Co3+ proportions in the perovskite. As a result, the thermal expansion coefficient of LCCF is drastically lowered to 12.6 × 10−6 K−1 upon x = 0.15 in Ce-LCCFx. Moreover, the single cell loaded with Ce-LCCF15 cathode demonstrates a superior maximum power density of 1.26 W cm−2 at 750 °C in H2. Interestingly, microstructure analysis suggests that abundant CeOx nanoparticles are exsolved in situ from the Ce-LCCF15 surfaces due to cathodic current polarization. The present study contributes to the understanding of the role of dopants in promoting the catalytic properties of cathode materials for SOFCs.
first_indexed 2025-11-14T11:48:36Z
format Journal Article
id curtin-20.500.11937-97477
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T11:48:36Z
publishDate 2025
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-974772025-04-16T03:10:05Z Unveiling promotion effects of Ce doping in La<inf>0.6</inf>Ca<inf>0.4</inf>Co<inf>0.2</inf>Fe<inf>0.8</inf>O<inf>3-δ</inf> as an efficient cathode for solid oxide fuel cells He, S. Li, Z. Hu, X. Li, Q. Song, X. Wang, Y. Zhang, X. Zhong, H. Tian, Y. Jiang, San Ping Perovskite La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) is to date the most intensively studied high-performance cathode material for solid oxide fuel cells (SOFCs), but strontium segregation at elevated temperatures critically impairs the activity and longevity of LSCF cathode. By substituting Sr with Ca, i.e. La0.6Ca0.4Co0.2Fe0.8O3-δ (LCCF), the stability of the perovskite can be reinforced, however, at the cost of reduced catalytic activity. Herein, we adopt an effective A-site Ce doping strategy to modify the structure and chemistry of LCCF and therefore to boost its electrochemical performance, i.e. La0.6Ca0.4-xCexCo0.2Fe0.8O3-δ (Ce-LCCFx, x = 0.05–0.2). The results reveal that replacing Ca2+ with Ce4+ notably alters the oxygen vacancies concentration, Fe4+/Fe3+ and Co4+/Co3+ proportions in the perovskite. As a result, the thermal expansion coefficient of LCCF is drastically lowered to 12.6 × 10−6 K−1 upon x = 0.15 in Ce-LCCFx. Moreover, the single cell loaded with Ce-LCCF15 cathode demonstrates a superior maximum power density of 1.26 W cm−2 at 750 °C in H2. Interestingly, microstructure analysis suggests that abundant CeOx nanoparticles are exsolved in situ from the Ce-LCCF15 surfaces due to cathodic current polarization. The present study contributes to the understanding of the role of dopants in promoting the catalytic properties of cathode materials for SOFCs. 2025 Journal Article http://hdl.handle.net/20.500.11937/97477 10.1016/j.jpowsour.2025.236977 unknown
spellingShingle He, S.
Li, Z.
Hu, X.
Li, Q.
Song, X.
Wang, Y.
Zhang, X.
Zhong, H.
Tian, Y.
Jiang, San Ping
Unveiling promotion effects of Ce doping in La<inf>0.6</inf>Ca<inf>0.4</inf>Co<inf>0.2</inf>Fe<inf>0.8</inf>O<inf>3-δ</inf> as an efficient cathode for solid oxide fuel cells
title Unveiling promotion effects of Ce doping in La<inf>0.6</inf>Ca<inf>0.4</inf>Co<inf>0.2</inf>Fe<inf>0.8</inf>O<inf>3-δ</inf> as an efficient cathode for solid oxide fuel cells
title_full Unveiling promotion effects of Ce doping in La<inf>0.6</inf>Ca<inf>0.4</inf>Co<inf>0.2</inf>Fe<inf>0.8</inf>O<inf>3-δ</inf> as an efficient cathode for solid oxide fuel cells
title_fullStr Unveiling promotion effects of Ce doping in La<inf>0.6</inf>Ca<inf>0.4</inf>Co<inf>0.2</inf>Fe<inf>0.8</inf>O<inf>3-δ</inf> as an efficient cathode for solid oxide fuel cells
title_full_unstemmed Unveiling promotion effects of Ce doping in La<inf>0.6</inf>Ca<inf>0.4</inf>Co<inf>0.2</inf>Fe<inf>0.8</inf>O<inf>3-δ</inf> as an efficient cathode for solid oxide fuel cells
title_short Unveiling promotion effects of Ce doping in La<inf>0.6</inf>Ca<inf>0.4</inf>Co<inf>0.2</inf>Fe<inf>0.8</inf>O<inf>3-δ</inf> as an efficient cathode for solid oxide fuel cells
title_sort unveiling promotion effects of ce doping in la<inf>0.6</inf>ca<inf>0.4</inf>co<inf>0.2</inf>fe<inf>0.8</inf>o<inf>3-δ</inf> as an efficient cathode for solid oxide fuel cells
url http://hdl.handle.net/20.500.11937/97477